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Splines and Cox Regression

• Splines are functions that are used to “smooth” continuous
measurements
• Can be thought of as polynomials
• A set of knots are selected and polynomial functions are

calculated between each knot and are independent of the shape
between previous knots
• Two popular types of splines are Restricted Cubic Splines (RCS)

(Durrleman and Simon 1989) and Penalized Splines (PS) (Eilers
and Marx 1996)
• RCS restricts the shape to linear below the first knot and past the

last knot while PS forces the parameters to be “close” to each
other
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Splines and Cox Regression

• Cox proportional hazards models are used to estimate hazard
ratios for certain events
• Used for time-to-event outcomes, such as death or disease onset
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Splines and Cox Regression

• Splines and Cox regression are frequently used together when
analyzing time to event data with continuous exposures
• As they make minimal assumptions, an analysis based upon

these combined approaches is often thought to be robust to model
mis-specification
• We were interested in how robust
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Exposure-Response Examples

Miller et al. 2017
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Exposure-Response Examples

• In many public health studies of the effects of alcohol on various
outcomes, frequently cardiovascular outcomes, have observed
that a small amount of alcohol consumption can be protective
• A small sample include Chokshi 2015, Di Castelnuova 2006, and

Xi et al. 2017
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Exposure-Response Examples
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Exposure-Response Examples

• A recent analysis of individual-participant data of three large data
sets (Emerging Risk Factors Collaboration, EPIC-CVD, and the
UK Biobank) examined the relationship between alcohol and CVD
outcomes (Wood et al. 2018)
• “The chief implication for scientific understanding is that ... the

association between alcohol consumption and total cardiovascular
disease risk is actually comprised of several distinct and opposite
dose-response curves rather than a single J-shaped association”
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Exposure-Response Examples
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Exposure-Response Examples

• Such an J-curves can be termed as a hormetic effect, and has
been observed in different settings:
• Cancer caused by Radon/radiation exposure (Thompson 2011

and Nakashima 2015)
• BMI and all cause mortality (Aune et al 2016)
• A database of hormetic dose responses (Calabrese and Blain,

2011) included 2527 citations across various exposures and
outcomes
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Exposure-Response Examples

Non-linear dose-response analysis of BMI and all cause mortality in
never smokers stratified by duration of follow-up, Aune et al. 2016
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Exposure-Response Examples

• J-curves are often observed when using the Cox model with
spline models
• Is this a coincidence?
• Are these relationships truly present or are they an artifact of the

modeling choices and exposure distribution?
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Exposure-Response Examples

• Silicosis is a form of pneumoconiosis, a dust-induced lung
disease, resulting from inhalation of silica (Park and Chen 2013)
• It ONLY occurs when there is silica exposure.
• While not significant nor highlighted by the authors, a J-shape

curve was seen in an analysis of a large cohort study (Morfeld et
al. 2013)
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Exposure-Response Examples
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Exposure-Response Examples

• Another study of 2862 tin miners was performed by Park and
Chen (2013) and did not observe a J-shaped relationship
• However, they did not perform Cox proportional hazard regression

nor use splines
• What would be seen if they had?
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Exposure-Response Examples
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Exposure-Response Examples

• This illustrates that with a poor choice of knots in RCS we can
observe a non-monotone incorrect relationship
• A J-shaped curve may be a mathematical side effect of combining

a spline model and a Cox model.
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Notation and Sufficient Conditions for J-shaped Curve

• Consider a model with exposure X and outcome Y
• Yi is the observed time for subject i with event indicator Ci
• Xi be a non-negative exposure for subject i .
• bk (x) represent the k th spline basis function for X defined over a

knot set T
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Notation and Sufficient Conditions for J-shaped Curve

• Let f (x) =
∑K

k=1 βkbk (x) be some function we wish to estimate
using the spline basis, where βk are unknown coefficients
• Without too much loss of generality, assume our spline basis is

monotone, such that f (x) is decreasing when βk < 0 and
increasing when βk > 0
• To observe a J-shaped response, it is necessary that the first

derivative be negative and then positive; that is, the initial βk
coefficients need to be negative and then positive.
• For maximum likelihood estimation, it is sufficient to investigate

the score function for the Cox proportional hazards model when
bk (x) is a monotone spline.
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Notation and Sufficient Conditions for J-shaped Curve

• Define f (x) as above and consider the score function of Cox
proportional hazard

˙̀(βk ) =
n∑

i=1

[
bk (xi) 1{Ci=1} +

∑n
j=1 θjbk (xj) 1{Yj>Yi}∑n

j=1 θj 1{Yj>Yi}

]
, (1)

where 1{·} is 1 if the logical condition is satisfied, zero otherwise,
and θj = exp(

∑K
k=1 βkbk (xj)).

• To have a non-monotone curve, it a necessary condition for
βk < 0, for some k .
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Notation and Sufficient Conditions for J-shaped Curve

• For any βk to be less than 0, it is a necessary condition for the
mean of (1) this quantity to be negative at βk = 0

1
n

n∑
i=1

[
bk (xi) 1{Ci=1} +

∑n
j=1 bk (xj) 1{Yj>Yi}∑n

j=1 1{Yj>Yi}

]
< 0, (2)

where θj = 1 because βk = 0 for all k .
• For large n this quantity converges almost surely and is dependent

on the expectation of E [bk (xi) 1Ci=1], which is solely dependent
on the distribution of the exposure and the chosen spline basis.
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Notation and Sufficient Conditions for J-shaped Curve

• Thus, the presence of a J-shape, or other non-monotone shape,
when the true relationship is monotone, depends on the exposure
distribution
• The exposure distribution is typically uncontrollable by the

researcher
• What scenarios, that is exposures, spline bases,

exposure-response relationships, would be likely to create a
“false” J-shape?
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Simulation

• To investigate the magnitude of J-curves in these splines a
simulation study was performed
• Conditions for simulation were selected using the data from Park

and Chen (2013)
• Silica exposures were generated from 4 distributions:

• Exponential (EXP)(mean=2)
• Inverse Gausian (IG)(mean=1, shape=0.4)
• LogNormal (LOG)(0,1)
• Normal(mean=3, standard deviation=1)
• Uniform (U)(0,5)

• RCS with 6 knots and PS were allowed to estimate knots naturally
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Simulation

• Generate data for 1,000, 5,000 and 15,000 subjects
• Event times generated from 4 types of non-decreasing response

rates with 3 rates each
• Exponential
• Linear
• Linear Spline, “Hockey stick”
• J-shape

• Presence of J-shape relationships were recorded and, if found,
tested for significance using Wald based Z-tests
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Simulation
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Simulation
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Simulation
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Simulation
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Simulation
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Simulation
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Simulation

• Very high rate of J-shapes curves
• Statistically significant relationships present in a high percentage

of simulations
• Other non-monotone, biased, relationships were observed but not

captured
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Conclusions

• Using polynomial splines within Cox regression is a common
practice
• J-shape curves could be observed even if that shape is not true

depending on the exposure distribution
• We are *not* suggesting that spline models are bad, nor that

J-shaped relationships do not exist in nature, just that cautious
examination should be given to any analysis where the J-shape
appears
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Future Research

• Model averaging technique that provides unbiased estimates
independent of exposure distribution
• Other non-monotone shapes
• Characterization of likelihood for incorrectly estimated

non-monotone relationships, i.e. can more information about
shape be hidden in the combination of the stochastic Cox
proportional hazards model and the spline basis
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Future Research
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Future Research
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