Understanding the Biochemical Origin of Sigmoidal Dose Responses: Ultrasensitive Response Motifs

September 5, 2017

Qiang Zhang, M.D., Ph.D.

Department of Environmental Health Rollins School of Public Health Emory University Atlanta, GA

Sigmoidal Dose Response

- 1. Sigmoidal response is a common type of dose response observed in biological systems
- 2. These sigmoidal curves are often approximated empirically, among others, by Hill equations
- 3. Steep sigmoidal responses can mediate switch-like, threshold effects
- 4. Cooperativity is the often-cited mechanism for sigmoidal responses
- 5. Diverse biochemical mechanisms other than cooperativity can generate sigmoidal responses
- 6. As chemical toxicity testing is increasingly based on in vitro cell assays, understanding the mechanisms becomes ever important

Outline

- 1. Sigmoidal dose response, Hill function, and ultrasensitivity
- 2. Common ultrasensitive response motifs (URM)
- 3. MAPK: an example of URM combination
- 4. Role of signal amplification thru URM in cellular dynamics

(Response: metabolism, gene expression, proliferation, apoptosis, carcinogenesis.....)

Bottom-up approach to understanding molecular circuits

Network Motif

Network motifs are relatively simple building blocks that frequently appear in complex molecular circuits and possess specific signaling properties.

Important common motifs:

Ultrasensitive response motifs

Ultrasensitivity refers to a (steady-state) stimulus-response that is significantly steeper than the hyperbolic, Michaelis-Menten form such that it appears globally as a sigmoid curve on a <u>linear</u> scale.

Hill Function

- The Hill coefficient measures globally how steep the sigmoid curve is by using the Michaelis-Menten formalism as reference.
- An ultrasensitive response, when approximated by Hill function, has n significantly greater than 1.

Hill Function

6

Common ultrasensitive motifs and the biochemical basis of sigmoidal responses

(1) Positive cooperative binding

(3) Multi-step signaling

(2) Homo-multimerization

(4) Molecular titration

(5) Zero-order covalent modification cycle (6) Positive feedback

* Positive cooperative binding occurs when $\frac{k4}{k3} < \frac{k2}{k1}$

(1) Positive cooperative binding

Approximated by Hill function

$$[R_{bound}] = \frac{R_{total}[X]^n}{K^n + [X]^n}$$

n: Hill coefficient

- When $\frac{k8}{k7} = \frac{k6}{k5} = \frac{k4}{k3} = \frac{k2}{k1}$ **n=1**
- When $\frac{k8}{k7} < \frac{k6}{k5} < \frac{k4}{k3} < \frac{k2}{k1}$ the affinity for subsequent binding is greater than that for previous binding, n=1~4

(1) Positive cooperative binding

(2) Homo-multimerization

(2) Homo-multimerization

$$X + R \xleftarrow{k_1}{k_2} XR + XR \xleftarrow{k_3}{k_4} X_2R_2$$

$$\frac{d[X_2R_2]}{dt} = k_3[XR]^2 - k_4[X_2R_2]$$

$$\int at \text{ steady state}$$

$$[X_2R_2] = \frac{k_3}{k_4}[XR]^2$$

and when X is at low concentrations, [XR] is approximately linear to [X], so...

(2) Homo-multimerization

- Binging of PDGF receptor (PDGFR) by its ligand PDGF leads to receptor dimerization and autophosphorylation.
- Data shows results of tyrosine phosphorylation of PDGFβR in NIH 3T3 fibroblasts stimulated by human recombinant PDGF-BB as ligand.

(3) Multi-step signaling

(3) Multi-step signaling

Assume at steady-state

$$[Y] = \frac{Y_{\max}[X]}{K_1 + [X]}$$

$$[Z] = \frac{Z_{\max}[X]}{K_2 + [X]} \frac{[Y]}{K_3 + [Y]}$$

$$[Z] = \frac{K_c[X]^2}{K_a^2 + [X]^2 + K_b[X]}$$

For multi-step signaling to generate ultrasensitivity, the converging paths have to act on processes that are **<u>synergistic</u>** rather than additive. The former denotes multiplication in mathematical term.

(where
$$K_a = \sqrt{\frac{K_1 K_2 K_3}{K_3 + Y_{\text{max}}}}$$
 $K_b = \frac{K_1 + K_2}{Y_{\text{max}}} + \frac{K_2}{K_3}$ $K_c = \frac{Z_{\text{max}} Y_{\text{max}}}{K_3 + Y_{\text{max}}}$

(3) An example of multi-step signaling ultrasensitivity

ZMP: an AMP mimic

Hardie et al, Biochem J 1999

SRA DRSG Teleseminar, September 5, 2017

upstream kinase, AMPKK; and (4) allosteric activation of AMPK.

(4) Molecular titration

Decoy receptor

Activator

Α

Repressor

Е

Ρ

Substrate

Product

(4) Molecular titration

(4) An example of molecular titration ultrasensitivity

Buchler and Cross, Mol Sys Biol 2009

(5) Covalent modification cycle

(5) Covalent modification cycle (zero-order ultrasensitivity)

(5) An example of zero-order ultrasensitivity

(6) Positive feedback

 ∇

Pro

(6) Positive feedback

Ultrasensitivity arises even when every activation step in the feedback loop is linear.

The ultrasensitive response can not be satisfyingly fitted with Hill function of any Hill coefficient.

Combinations of Ultrasensitive Motifs

MAPK cascade, motif, and function

Adapted from Johnson and Lapadat, Science 2002

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 10078–10083, September 1996 Biochemistry

Ultrasensitivity in the mitogen-activated protein kinase cascade

CHI-YING F. HUANG AND JAMES E. FERRELL, JR.[†]

JNK ultrasensitivity in mammalian cells

Bagowski et al, Current Biology 2003

MAPK cascade outputs increasing degree of ultrasensitivity

Origin of MAPK ultrasensitivity (I): multi-step signaling

Scenario 1: one collision (processive)

- Scenario 2 is what actually happens with dualphosphorylation of MKK.
- Two separate collisions mean MKKK will appear (twice) as a non-linear term for the rate of dualphosphorylation of MKK. This is a form of multi-step signaling, one of the sources for ultrasensitivity.
- Dual-phosphorylation of MAPK also proceeds similarly via two collisions.

Scenario 2: two collisions (nonprocessive, multi-step signaling \rightarrow ultrasensitivity)

Origin of MAPK ultrasensitivity (II): zero-order ultrasensitivity

- In the MAPK cascade, each kinase is phosphorylated by its upstream kinase and dephosphorylated by a phosphatase. This covalent modification cycle may generate ultrasensitivity if the amount of the kinase, as a substrate, is comparable or greater than the Michaelis-Menten constants for its phosphorylation and dephosphorylation.
- There are at least four phosphorylation/dephosphorylation cycles in the cascade, and each could be a potential source for some degree of zero-order ultrasensitivity.

Origin of MAPK ultrasensitivity (III): layered arrangement

- With multi-step signaling and zero-order ultrasensitivity, each layer of the MAPK cascade could have some degree of ultrasensitive response of its own, e.g., MKKpp vs. MKKK*, and MAPKpp vs. MKKpp.
- When two ultrasensitive layers are linked in tandem into a cascade, it is possible that the cascade as a whole is more ultrasensitive than each individual layer alone. This is analogous to feeding the output of one amplifier into another amplifier, together they generate a much greater output than each individual amplifier can do.

MAPK cascade is embedded in larger networks

Ultrasensitive response motifs

Ultrasensitivity refers to a (steady-state) stimulus-response that is significantly steeper than the hyperbolic, Michaelis-Menten form such that it appears globally as a sigmoid curve on a <u>linear</u> scale.

Invention of the vacuum tube triode and later the transistor – *both of which can amplify electrical signals* – heralded the age of modern electronics

Ultrasensitivity is required for complex dynamics

Summary

- Ultrasensitive motifs transfer signal in a sigmoid manner such that they amplify the percentage changes in the input signal.
- Motifs that may generate ultrasensitivity include positive cooperative binding, homo-multimerization, multi-step signaling, molecular titration, zero-order covalent modification cycle, and positive feedback.
- Ultrasensitive motifs can be linked in sequence to generate steeply sigmoid, or even switch-like response.
- The MAPK cascade transfers signal in an ultrasensitive manner.
- Ultrasensitive motifs are required to generate more complex behaviors, including bistability, robust homeostasis, oscillation, and others.