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Overview

1. EPA’s testing vision

2. What is (phenotypic) profiling?

3. Application of HTPP at the Center for Computational Toxicology & Exposure
(Nyffeler et al. 2020a)

4. Optimization of concentration-response modeling and potency estimation
(Nyffeler et al. 2020b, accepted)



Blueprint of Computational Toxicology

The Next Generation Blueprint of 
Computational Toxicology at the U.S. 
Environmental Protection Agency
Thomas et al. 2019
Toxicological Sciences, Volume 169, Issue 2, 
June 2019, Pages 317–332

Two profiling assays:
• transcriptomics
• phenotypic profiling



What is (phenotypic) profiling?



What does ‘profiling’ mean?

Targeted assays

Example: Estrogen receptor agonist assay 
(NVS_NR_hER)

• Response: decreased radioligand binding

• Positive control: 17b-estradiol

• Number of endpoints: 1

 For active chemicals, the response is 
a predictable change in a single
endpoint in a known direction

Profiling assays

Example: Transcriptomics

• Response: any meaningful change in transcript levels

• Number of ‘endpoints’: ~ 10’000 

For active chemicals, responses involve 
changes in many different endpoints in 
unknown directions. Vary from chemical-
to-chemical.



What is imaging-based phenotypic profiling? 

• staining of various cell organelles with fluorescent dyes in in vitro cultures
• assessing a large variety of morphological features on individual cells

Cell Painting = Cytological Profiling = Phenotypic Profiling = high-throughput Phenotypic Profiling = HTPP 

Golgi + membrane 
+ actin skeleton DNA RNA + ER mitochondria

1300 features



Exemplary chemicals

 Strong phenotypes are observable qualitatively

adapted from Nyffeler et al. 2020a

Mitochondrial 
compactness/texture

 Cells are larger 



The High-Throughput Phenotypic Profiling (HTPP) assay

-24 h
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adapted from Nyffeler et al. 2020a

POD: point-of-departure
=

PAC: phenotype altering concentration



1. find nuclei 2. find cell outline 3. reject border objects

Image analysis workflow: image segmentation



nuclei cytoplasm membrane

cell ring

Image analysis workflow: define cellular compartments



1300 features / cell

With illustrations from Perkin Elmer
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Data processing for profiling plates

Data reduction
in R

cell-level data

normalized
cell-level data

well-level data

cell value – medianDMSO

1.4826 MADDMSO

Benchmark dose (BMD) modelling
using BMDExpress 2.2

BMD modelling

Model selection

1300 features

BMD

scaled 
well-level data

Cell viability info
Conc. above  LEC removed

Berberine chloride
Mito_Cells_Morph_STAR

Normalization
MAD normalization

Aggregation
median

Standardization
Z transformation

clipped 
well-level data



Aggregate the BMDs to a PAC

49 categories

1300 BMDs

Phenotype altering concentration (PAC):
Median BMD of the most sensitive ontology 

(where ≥ 30% ontology elements affected)

1. Group the 1300 BMDs into 
49 categories

2. Order the categories by potencies

BMD: benchmark dose
=

BMC: benchmark concentration

POD: point-of-departure
=

PAC: phenotype altering concentration



Application of HTPP



Screen of environmental chemicals

• 462 test chemicals
• pesticides (~ 75%), drug-like chemicals, food additives, industrial chemicals
• 448 chemical from the ‘APCRA’ list

• available in vivo effect values
• available toxicokinetic parameters for in vitro to in vivo extrapolation (IVIVE)

 95% of test chemicals were bioactive in the HTPP assay

Experimental design
Cell type U-2 OS
Exposure time 24 h
Cell seeding density per well 400
# unique chemicals 462
# concentrations 8
Concentration spacing ½ log10
# solvent controls/plate 24
# replicates/plate 1
# independent experiments 4

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

Nyffeler et al. 2020a

Presenter
Presentation Notes
APCRA Case Study Chemicals + DuplicatesUnilever CRADA Consensus Chemicals HTTr Pilot ChemicalsInternational collaboration of regulatory scientists focused on developing case studies for evaluating the use of New Approach Methodologies (NAMs) in chemical risk assessment.ECHA Workshop (2017) case study focuses on deriving quantitative estimates of risk based on NAM-derived potency information and computational exposure estimates



Comparison to in vivo data and exposure

HTPP POD 
(µM)

In vitro-to-in vivo 
extrapolation (IVIVE)

high-throughput toxicokinetics (httk)
HTPP AED 

(mg/kg bw/day)

in vivo  point-of-departure

Database of in vivo effect values 
(EPA – ToxValDB)
• Mammalian species
• oral exposures
• Various study types
• NOEL, LOEL, NOAEL, LOAEL
• mg/kg/day

Toxcast POD (µM)

Toxcast AED 
(mg/kg bw/day)

Toxicological 
threshold of 

concern 
(TTC)

Exposure predictions
(EPA ExpoCast)
• Systematic Empirical 

Evaluation of Models 
(SEEM) version 3

• Inferred from human 
biomonitoring data, 
production volume and use 
categories (industrial / 
consumer use)

Predicted exposure New approach methodologies (NAMs)

POD: point-of-departure
AED: administered equivalent dose



Comparison to in vivo effect values & other NAMs (I)

 HTPP AEDs are higher than ToxCast-derived AEDs and TTC values
 81% of HTPP AED are within 2 orders of magnitude of the in vivo POD

Nyffeler et al. 2020a

Presenter
Presentation Notes
explain in figure A that we compare all NAM values to the corresponding in vivo value



Comparison to in vivo effect values & other NAMs (II)

 for 68% (285/420) of chemicals, HTPP AEDs led to a conservative or comparable surrogate 

Nyffeler et al. 2020a



Comparison to exposure estimates

 for 49% of chemicals, predicted exposure is > 1000x lower than estimated bioactivity
 for a small set of chemicals, the BER was negative, indicating a potential for humans to be exposed 

to bioactive concentrations of these chemicals

HTPP AEDs were compared to exposure predictions and the bioactivity exposure ratio was calculated as follows:

Bioactivity exposure ratio (BER) =
lower bound of HTPP bioactivity

upper bound of exposure estimate
= log10

HTPP AED 5th

SEEM3 95th

unpublished

chemicals 
of lesser 
concern



Conclusions I

Next steps:
• Test chemicals in multiple cell types to increase biological coverage

HTPP in vitro potencies can be used for bioactivity exposure ratio
analysis and prioritizing of chemicals based on inferred bioactivity in
relation to predicted human exposure



Optimization of Hit Identification



Challenges in analysis of profiling data

Targeted assays

• Response is predictable
• Often have a positive control
• Often have known negative controls

 Use of positive and negative 
controls to set a threshold for hit calls

Profiling assays

• Measure 100s – 1000s of features
 not feasible to define a threshold 
for each feature in an analogous 
manner to targeted assays.

• Multiple diverse phenotypes can be 
observed
 no single ‘positive control’

• Multiple testing problem can lead to 
identification of false actives

 How should thresholds be chosen to 
ensure reliable hit calls?https://www.researchgate.net/profile/Denis_Reis/publication/327847657/figure/fig1/AS:6744467633807

38@1537812047280/Threshold-and-score-distribution-for-a-binary-classification-process.png

 no widely accepted standard practices for hit identification from phenotypic 
profiling data  potential barrier for regulatory applications



Challenges of environmental chemicals

• Often low expected bioactivity
• Often lack a specific molecular target in human-based cell models
• ‘poly-pharmacology’
• Responses can be associated with general cell stress

 more challenging for hit identification than drug-like chemicals



Procedure

• Data from the APCRA set
• Well-level data for 478 chemicals
• 8 concentrations
• 4 biological replicates

• Constructed a null data set
• Sampling of well-level data from the lowest two tested concentrations of test chemicals
• 108 ‘null chemicals’ were generated, with 8 concentrations and 4 biological replicates
 False positive rate

• Reference chemical berberine chloride
• 12 independent replicates
 True positive rate

• Test chemicals run in duplicates
• 16 test chemicals were screened twice
Concordance

• 15 different approaches were compared at a fixed false positive rate of ~10%
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0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 D Stauro DMSO DMSO

Presenter
Presentation Notes
Parameters that were “tuned” to achieve false positive rate included:Cutoff threshold (based on variance of solvent controls)Hit call probability for tcplfit2Threshold for effect size for BMDExpress or…,Threshold for signature generation



Different approaches to identify hits

Nyffeler et al. 2020b

potency estimate = phenotype altering concentration = PAC

previously used 
approach



Metrics

• False positive rate (FPR) = % of null chemicals that are positive
• Null sets are constructed from the lowest 2 concentration of all test chemicals

• True positive rate (TPR) = % of APCRA Berberine that are positive
• Berberine chloride: weak chemical with specific effects in only 100-200 features
most closely resembles expected behavior from positive test chemicals

• Hit  rate = % of test chemicals that are active
• Concordance: 

• % of test chemicals with concordant hit calls (all inactive or all active)
• Number = # chemicals that are active

Thresholds for each approach were individually optimized for
1. False positive rate of ~ 10%
2. Highest true positive rate (100%)
3. Best possible concordance & high hit rate



Optimizing approaches to achieve equivalent false discovery rate

 11/15 approaches identified 100% of true positives
 Hit rate is overall between 50-70%

Nyffeler et al. 2020b

Presenter
Presentation Notes
Parameters that were “tuned” to achieve false positive rate included:Cutoff threshold (based on variance of solvent controls)Hit call probability for tcplfit2Threshold for effect size for BMDExpress or…,Threshold for signature generation



Concordance of hit calls across approaches (I)

 Large amount of chemicals that are unanimously identified as active/inactive

inactive
with all methods

active
with all methods Nyffeler et al. 2020b



Concordance of hit calls across approaches (II)

 87% of null chemicals were 
inactive in 9 or more approaches

 51% of test chemicals were active in 
9 or more approaches

 30% of test chemicals were inactive 
in 9 or more approaches

Nyffeler et al. 2020b

Presenter
Presentation Notes
For 81% of the test chemicals, 9 or more methods agree.



Concordance of hit call associated with signal strength

Nyffeler et al. 2020b



Concordance of potency estimates (I)

Approach estimates 
the same potency

Some approaches have 
more variation than others

• 12 repetitions of each reference chemical
• Does the approach always estimate the same potency?

tested 
concentration 
range

PAC: 
phenotype altering 
concentration

Nyffeler et al. 2020b



Concordance of potency estimates (II)

Null chemicals Duplicated chemicals

How much do the potencies of the 
replicates vary from each other?

Does the approach produce many high-
potency false positives?

 Feature-based approaches (including category-level aggregation) have a higher 
risk of false positive, highly potent results

Nyffeler et al. 2020b



Concordance of potency estimates (III)

Test chemicals

For each chemical

1. Calculate the median potency across 
all 9 approaches

2. Calculate for each approach the 
difference to this median

Is an approach rather 
underpredicting or overpredicting 
the potency of a chemical?

• asdfasdf

 Feature-level approaches result in highest potency
 Global fitting and ssGSEA result in lowest potency

high 
potency

low 
potency

Nyffeler et al. 2020b



Comparison of bioactivity profiles
across category-based approaches

 Category-level fitting of Mahalanobis 
distances gives similar results to the previous 
category-aggregation approach

 ssGSEA is less sensitive, produces higher 
BMCs and identifies fewer categories as 
affected

 In some cases categories associated with the 
known phenotype of reference chemicals 
were not identified with ssGSEA.

Nyffeler et al. 2020b



Conclusions on individual approaches

• Feature-level methods: 
• high hit rate, but high risk of high-potent false positives

• Category-level aggregation: 
• alleviate the problem of highly potent false positives slightly

• Category-level fitting Mahalanobis:
• Worked surprisingly well!

• Category-level fitting ssGSEA:
• Was not sensitive in picking up one of the reference chemicals; gives lower potencies

• Global Mahalanobis:
• Computationally fast (only 1 curve modelled), worked well

• Global Euclidean:
• Computationally fast + simple, but low sensitivity (TPR), low concordance



Conclusions II

• Reanalysis of the APCRA data set increased our confidence in the data

• Constructing a null data set is useful to evaluate method performance

• All approaches had a similar hit rate (50-70%)

• For 81% of chemicals, at least 9/11 approaches agreed 
 we have high confidence in the resulting hit calls

Next steps:
• Analyze a screen of ~1200 chemicals with the category-level Mahalanobis and global 

Mahalanobis approaches.



Thank you for your attention!

Questions?

Nyffeler.Johanna@epa.gov
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