

Concentration-response analysis of image-based high-throughput phenotypic profiling data for chemical bioactivity screening

Johanna Nyffeler, PhD

ORCiD 0000-0002-6155-9743 Nyffeler.Johanna@epa.gov

Office of Research and Development Center for Computational Toxicology & Exposure

08/04/2020

Disclaimer

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Acknowledgements

Office of Research and Development (ORD) Center for Computational Toxicology and Exposure (CCTE)

Harrill Lab team

- Joshua Harrill
- Clinton Willis
- Rick Brockway
- Megan Culbreth
- Dan Hallinger
- Terri Fairley

Data analysis

- Ryan Lougee
- Ann Richard
- John Wambaugh
- Derik Haggard
- Woody Setzer
- Logan Everett
- Richard Judson
- Katie Paul-Friedman

• Scott Auerbach

Overview

- 1. EPA's testing vision
- 2. What is (phenotypic) profiling?
- 3. Application of HTPP at the Center for Computational Toxicology & Exposure (Nyffeler et al. 2020a)
- 4. Optimization of concentration-response modeling and potency estimation (Nyffeler et al. 2020b, *accepted*)

Blueprint of Computational Toxicology

The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency

Thomas et al. 2019 *Toxicological Sciences*, Volume 169, Issue 2, June 2019, Pages 317–332

Two profiling assays:

- transcriptomics
- phenotypic profiling

What is (phenotypic) profiling?

Targeted assays

Example: Estrogen receptor agonist assay (NVS_NR_hER)

- Response: decreased radioligand binding
- Positive control: 17b-estradiol
- Number of endpoints: 1

Profiling assays

Example: Transcriptomics

- Response: any meaningful change in transcript levels
- Number of 'endpoints': ~ 10'000

→ For active chemicals, the response is a <u>predictable</u> change in a <u>single</u> endpoint in a known direction →For active chemicals, responses involve changes in many different endpoints in unknown directions. Vary from chemical-to-chemical.

What is imaging-based phenotypic profiling?

- staining of various cell organelles with fluorescent dyes in *in vitro* cultures
- assessing a large variety of morphological features on individual cells

Cell Painting = Cytological Profiling = Phenotypic Profiling = high-throughput Phenotypic Profiling = HTPP

Exemplary chemicals

Strong phenotypes are observable qualitatively

compactness/texture

adapted from Nyffeler et al. 2020a

The High-Throughput Phenotypic Profiling (HTPP) assay

Median BMD [µM]

POD: point-of-departure = PAC: phenotype altering concentration

Image analysis workflow: image segmentation

1. find nuclei

2. find cell outline

3. reject border objects

EPA United States Environmental Protection Avignmental Protection Environmental Protection Avignmental Protection

nuclei

cytoplasm

membrane

cell

Phenotypic feature extraction

5 Channels (organelles) RNA ER AGP MITO	NUCLEUS RING i i i i i i i i i i	Axial Symmetry Symmetry	nn l	0 2 0	1	49 feature (ex. Mito_Texto 1300 features / cell						categories Jre_Cytoplasm)	
	Star Star			Profile		Basic	Module SCARP morphology						
DNA	Compactness	Shape		FIGHE	Position [7]	morph- ology [5]	Symmetry [80]	Compactness [40]	Axial [20]	Radial [28]	Profile [20-30]	- Intensity [9]	Texture [14]
,				DNA			Nuclei	Nuclei	Nuclei	Nuclei Cell	Nuclei Cytoplasm	Nuclei	Nuclei
	PerkinFlmer	<u>r Opera Phenix</u> Confocal (single <i>z</i>) 20X Water CellCarrier-384 Ultra 5 or 9		RNA			Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei
	Modality: Objective: Plate: Fields:		<u>_</u>	ER			Cell	Cell	Cell	Cell	Cytoplasm	Ring Cytoplasm	Ring Cytoplasm
			Channe	AGP			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm Membrane	Ring Cytoplasm Membrane
				Mito			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm	Ring Cytoplasm
				Not associated with a channel	Nuclei Cell	Nuclei Cell							

With illustrations from Perkin Elmer

Data processing for profiling plates

Aggregate the BMDs to a PAC

2. Order the categories by potencies

Phenotype altering concentration (PAC): Median BMD of the most sensitive ontology (where ≥ 30% ontology elements affected)

BMD: benchmark dose = BMC: benchmark concentration

POD: point-of-departure = PAC: phenotype altering concentration

Application of HTPP

	Toxicology and Applied Pharmacology 389 (2020) 114876				
AN THE AND	Contents lists available at ScienceDirect				
		Toxicology			
		and Applied Pharmacology			
South State	Toxicology and Applied Pharmacology				
E Staller					
EI CEVIED	iournal homonage: www.eleovier.com/locate/taan				
ELSEVIER	Journal nomepage. www.eisevier.com/locate/taap				
Bioactivity s	creening of environmental chemicals using imaging-based high-				
21000011119		Check for			
throughput phenotypic profiling					
Johanna Nyffel	er ^{a, D} , Clinton Willis ^{a, c} , Ryan Lougee ^{a, D} , Ann Richard ^a , Katie Paul-Friedman ^a ,				
Joshua A. Harr	ill ^{a,} *				

Screen of environmental chemicals

- 462 test chemicals
 - pesticides (~ 75%), drug-like chemicals, food additives, industrial chemicals
 - 448 chemical from the 'APCRA' list
 - available in vivo effect values
 - available toxicokinetic parameters for in vitro to in vivo extrapolation (IVIVE)

Kavlock et al. (2018) Chem. Res. Tox; 31(5): 287-290

Experimental design	
Cell type	U-2 OS
Exposure time	24 h
Cell seeding density per well	400
# unique chemicals	462
# concentrations	8
Concentration spacing	1/2 log ₁₀
# solvent controls/plate	24
# replicates/plate	1
# independent experiments	4

Nyffeler et al. 2020a

⇒ 95% of test chemicals were bioactive in the HTPP assay

Comparison to in vivo data and exposure

Comparison to in vivo effect values & other NAMs (I)

- HTPP AEDs are higher than ToxCast-derived AEDs and TTC values
- ⇒ 81% of HTPP AED are within 2 orders of magnitude of the *in vivo* POD

Comparison to in vivo effect values & other NAMs (II)

⇒ for 68% (285/420) of chemicals, HTPP AEDs led to a conservative or comparable surrogate

Comparison to exposure estimates

HTPP AEDs were compared to exposure predictions and the bioactivity exposure ratio was calculated as follows:

⇒ for 49% of chemicals, predicted exposure is > 1000x lower than estimated bioactivity

for a small set of chemicals, the BER was negative, indicating a potential for humans to be exposed to bioactive concentrations of these chemicals

Conclusions I

HTPP *in vitro* potencies can be used for bioactivity exposure ratio analysis and prioritizing of chemicals based on inferred bioactivity in relation to predicted human exposure

Next steps:

• Test chemicals in multiple cell types to increase biological coverage

Optimization of Hit Identification

Comparison of Approaches for

Determining Bioactivity Hits

from High-Dimensional Profiling Data

Johanna Nyffeler^{1,2}, Derik E. Haggard^{1,2}, Clinton Willis^{1,3}, R. Woodrow Setzer¹, Richard Judson¹, Katie Paul Friedman¹, Logan J. Everett¹, Joshua A. Harrill¹

Challenges in analysis of profiling data

Targeted assays

- Response is predictable
- Often have a positive control
- Often have known negative controls

Use of positive and negative controls to set a threshold for hit calls

https://www.researchgate.net/profile/Denis_Reis/publication/327847657/figure/fig1/AS:6744467633807 38@1537812047280/Threshold-and-score-distribution-for-a-binary-classification-process.png

Profiling assays

- Measure 100s 1000s of features
 → not feasible to define a threshold
 for each feature in an analogous
 manner to targeted assays.
- Multiple diverse phenotypes can be observed
 → no single 'positive control'
- Multiple testing problem can lead to identification of false actives

➔ How should thresholds be chosen to ensure reliable hit calls?

no widely accepted standard practices for hit identification from phenotypic profiling data profiling data potential barrier for regulatory applications

Challenges of environmental chemicals

- Often low expected bioactivity
- Often lack a specific molecular target in human-based cell models
- 'poly-pharmacology'
- Responses can be associated with general cell stress
- ⇒ more challenging for hit identification than drug-like chemicals

Procedure

• Data from the APCRA set

- Well-level data for 478 chemicals
- 8 concentrations
- 4 biological replicates
- Constructed a null data set

- Sampling of well-level data from the lowest two tested concentrations of test chemicals
- 108 'null chemicals' were generated, with 8 concentrations and 4 biological replicates

 \rightarrow False positive rate

• Reference chemical berberine chloride

• 12 independent replicates

 \rightarrow True positive rate

• Test chemicals run in duplicates

• 16 test chemicals were screened twice

 \rightarrow Concordance

15 different approaches were compared at a fixed false positive rate of ~10%

Different approaches to identify hits

potency estimate = phenotype altering concentration = PAC

Metrics

- False positive rate (FPR) = % of null chemicals that are positive
 - Null sets are constructed from the lowest 2 concentration of all test chemicals
- True positive rate (TPR) = % of APCRA Berberine that are positive
 - Berberine chloride: weak chemical with specific effects in only 100-200 features
 → most closely resembles expected behavior from positive test chemicals
- Hit rate = % of test chemicals that are active
- Concordance:
 - % of test chemicals with concordant hit calls (all inactive or all active)
 - Number = # chemicals that are active

Thresholds for each approach were individually optimized for

- 1. False positive rate of ~ 10%
- 2. Highest true positive rate (100%)
- 3. Best possible concordance & high hit rate

Optimizing approaches to achieve equivalent false discovery rate

Nyffeler et al. 2020b

- ⇒ 11/15 approaches identified 100% of true positives
- ⇒ Hit rate is overall between 50-70%

Concordance of hit calls across approaches (I)

⇒ Large amount of chemicals that are unanimously identified as active/inactive

Concordance of hit calls across approaches (II)

В

- 87% of null chemicals were inactive in 9 or more approaches
- 51% of test chemicals were active in
 9 or more approaches
- ⇒ 30% of test chemicals were inactive in 9 or more approaches

Concordance of hit call associated with signal strength

Concordance of potency estimates (I)

- 12 repetitions of each reference chemical
- Does the approach always estimate the same potency?

Concordance of potency estimates (II)

Null chemicals

Does the approach produce many highpotency false positives?

Feature-level fitting (BMDExp) -Feature-level fitting (tcplfit2) -Eigenfeature-level fitting -Category-level aggregation (BMDExp) -Category-level aggregation (tcplfit2) -Category-level fitting Mahalanobis -Category-level fitting ssGSEA -Global Mahalanobis -Global Euclidean -

Duplicated chemicals

How much do the potencies of the replicates vary from each other?

➡ Feature-based approaches (including category-level aggregation) have a higher risk of false positive, highly potent results

Concordance of potency estimates (III)

Test chemicals

For each chemical

- 1. Calculate the median potency across all 9 approaches
- 2. Calculate for each approach the difference to this median

Is an approach rather underpredicting or overpredicting the potency of a chemical?

Test chemicals (n=227)

⇒ Feature-level approaches result in highest potency

⇒ Global fitting and ssGSEA result in lowest potency

Comparison of bioactivity profiles across category-based approaches

B Category-level approaches

- R Radial P Profile
- Category-level fitting of Mahalanobis
 distances gives similar results to the previous category-aggregation approach
- ssGSEA is less sensitive, produces higher
 BMCs and identifies fewer categories as affected
- In some cases categories associated with the known phenotype of reference chemicals were not identified with ssGSEA.

Conclusions on individual approaches

- Feature-level methods:
 - high hit rate, but high risk of high-potent false positives
- Category-level aggregation:
 - alleviate the problem of highly potent false positives slightly
- Category-level fitting Mahalanobis:
 - Worked surprisingly well!
- Category-level fitting ssGSEA:
 - Was not sensitive in picking up one of the reference chemicals; gives lower potencies
- Global Mahalanobis:
 - Computationally fast (only 1 curve modelled), worked well
- Global Euclidean:
 - Computationally fast + simple, but low sensitivity (TPR), low concordance

Conclusions II

- Reanalysis of the APCRA data set increased our confidence in the data
- Constructing a null data set is useful to evaluate method performance
- All approaches had a similar hit rate (50-70%)
- For 81% of chemicals, at least 9/11 approaches agreed
 → we have high confidence in the resulting hit calls

Next steps:

 Analyze a screen of ~1200 chemicals with the category-level Mahalanobis and global Mahalanobis approaches.

Thank you for your attention!

Questions?

Nyffeler.Johanna@epa.gov