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1. EPA’s testing vision
2. What is (phenotypic) profiling?

3. Application of HTPP at the Center for Computational Toxicology & Exposure
(Nyffeler et al. 2020a)

4. Optimization of concentration-response modeling and potency estimation
(Nyffeler et al. 2020b, accepted)




SEPA Blueprint of Computational Toxicology

Agency

The Next Generation Blueprint of ( Chemical Strutfture .Broad Coverage, Multiplg cell types Tier 1 \
I I h and Properties High Content Assay(s) +/- metabolic competence

Computational Toxicology at the U.S.
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Cellular Phenotype Perturbation Organ-level Effect without AOP
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What is (phenotypic) profiling?
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"EPA What does ‘profiling’ mean?
Targeted assays Profiling assays
Example: Estrogen receptor agonist assay Example: Transcriptomics
(NVS_NR_hER)
* Response: decreased radioligand binding * Response: any meaningful change in transcript levels
* Positive control: 17b-estradiol * Number of ‘endpoints’: ~ 10’000

* Number of endpoints: 1

—> For active chemicals, the response is 2> For active chemicals, responses involve

a predictable change in a single changes in many different endpoints in
endpoint in a known direction unknown directions. Vary from chemical-

to-chemical.




SEPA What is imaging-based phenotypic profiling?

. staining of various cell organelles with fluorescent dyes in in vitro cultures
. assessing a large variety of morphological features on individual cells

Golgi + membrane ] .
RNA + ER + actin skeleton mitochondria

Ky /7 . . -"\ on
) sity \\Za
e inten ‘ \oce fext Ure

1300 features

Cell Painting = Cytological Profiling = Phenotypic Profiling = high-throughput Phenotypic Profiling = HTPP




SEPA Exemplary chemicals

DNA Mitochondria
DNA RNA/ER

- Mitochondrial - Cells are larger
compactness/texture

= Strong phenotypes are observable qualitatively

adapted from Nyffeler et al. 2020a



SEPA The High-Throughput Phenotypic Profiling (HTPP) assay

Environmental Protection
Agency
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adapted from Nyffeler et al. 2020a



EPA Image analysis workflow: image segmentation

Environmental Protection
Agency

1. find nuclei 3. reject border objects
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SEPA  Image analysis workflow: define cellular compartments

ironmental Protectio
Age cy

nuclei cytoplasm membrane
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SEPA Phenotypic feature extraction

Environmental Protection
Agency

5 Compartments
MNUCLEUS RING CYTOPLASM MEMBRANE CELL

49 feature categories
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With illustrations from Perkin Elmer
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Normalization
MAD normalization

Data reduction
in R

cell-level data

cell value — mediangysg

Y

normalized
cell-level data

Aggregation

median

Standardization
Z transformation

well-level data

scaled

1.4826 MADpc0

well-level data

-20-15-10 -5 0 5 10 156 20

clipped
well-level data

Data processing for profiling plates

Benchmark dose (BMD) modelling
using BMDEXxpress 2.2

1300 features

I

BMD modelling

l

Model selection

ssion)

Log(Expre
o o
-

Berberine chloride
Mito_Cells_Morph_STAR




“EPA Aggregate the BMDs to a PAC

Environmental Protection
Agency

1. Group the 1300 BMDs into 2. Order the categories by potencies
49 categories

= count
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0.1 1 10 100 1000
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(@ ))

PAC: phenotype altering concentration
Phenotype altering concentration (PAC):

Median BMD of the most sensitive ontology
(where 2 30% ontology elements affected)
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Application of HTPP

Toxicology and Applied Pharmacology 389 (2020) 114876

Contents lists available at ScienceDirect

Toxicology and Applied Pharmacology

ELSEVIER journal homepage: www.elsevier.com/locate/taap

Bioactivity screening of environmental chemicals using imaging-based high- | M)
throughput phenotypic profiling et tr

Johanna Nyffeler™®, Clinton Willis*“, Ryan Lougee™", Ann Richard®, Katie Paul-Friedman®,
Joshua A. Harrill™*
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Screen of environmental chemicals

Environmental Protection

Agency

e 462 test chemicals

» pesticides (~ 75%), drug-like chemicals, food additives, industrial chemicals

e 448 chemical from the ‘APCRA’ list
e available in vivo effect values

* available toxicokinetic parameters for in vitro to in vivo extrapolation (IVIVE)

CV hits

Experimental design

Cell type U-2 OS
Exposure time 24 h
Cell seeding density per well 400
# unique chemicals 462
# concentrations 8
Concentration spacing V21094,
# solvent controls/plate 24

# replicates/plate 1

# independent experiments 4

Accelerating the Pace of Chemical Risk Assessment

A P C R A A m

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

CP hits

21
Nyffeler et al. 2020a

= 95% of test chemicals were bioactive in the HTPP assay
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Presentation Notes
APCRA Case Study Chemicals + Duplicates
Unilever CRADA Consensus Chemicals 
HTTr Pilot Chemicals

International collaboration of regulatory scientists focused on developing case studies for evaluating the use of New Approach Methodologies (NAMs) in chemical risk assessment.
ECHA Workshop (2017) case study focuses on deriving quantitative estimates of risk based on NAM-derived potency information and computational exposure estimates




< EPA Comparison to in vivo data and exposure
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Agency

| Predicted exposure | New approach methodologies (NAMs) | | invivo point-of-departure |
Exposure predictions Toxicological Toxcast POD (uM) HTPP POD Database of in vivo effect values
(EPA ExpocCast) threshold of (M) (EPA - ToxValDB) POD: point-of-departure
° Systematic Empirical concern * Mammalian species AED: administered equivalent dose
Evaluation of Models (TTC) In vitro-to-in vivo * oral exposures
(SEEM) version 3 . * Various study types
* Inferred from human extrapolation (IVIVE) + NOEL, LOEL, NOAEL, LOAEL
biomonitoring data, high-throughput toxicokinetics (httk) * mg/kg/day
production volume and use
categories (industrial / Toxcast AED HTPP AED
consumer use) (mg/kg bw/day) (mg/kg bw/day)
95% A 5% 50% 95% 5% 50% 95% 5%
O ! O

X L




“EPA Comparison to in vivo effect values & other NAM:s (1)
| |
. l.
60 = . I i
t_g | L ToxCast (Friedman et al. 2019)
g _-|_|—C
£ 40-
©
8
E 201
=
0 B =
-3.8 -09 0.2
S S T TH S T S S S S S S S

I th Nyffeler et al. 2020a
091 (TTC or AED 50" / PODyyaq )

= HTPP AEDs are higher than ToxCast-derived AEDs and TTC values
o = 81% of HTPP AED are within 2 orders of magnitude of the in vivo POD
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Presentation Notes
explain in figure A that we compare all NAM values to the corresponding in vivo value
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= for 68% (285/420) of chemicals, HTPP AEDs led to a conservative or comparable surrogate
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Comparison to exposure estimates

HTPP AEDs were compared to exposure predictions and the bioactivity exposure ratio was calculated as follows:

Bioactivity exposure ratio (BER) =

80 1

60 -

Number of chemicals

20

| o

= for 49% of chemicals, predicted exposure is > 1000x lower than estimated bioactivity

lower bound of HTPP bioactivity

40 4

chemicals
of lesser
concern

29

0 5 10
Bioactivity-Exposure Ratio

upper bound of exposure estimate

B

SEEM3 95™ [log:o(mg/kg-bw/day)]

= logyg (

Dibutyl
adipate
Bis(2-

Tamoxifen Sulisobenzone ethylhexyl)

citrate Ammonium Cyazofamid .

Darbufelone perfluorooctanoate 4

mesylate Dinoseb

2,6-Di-
Gentian tert- )
Violet @ butylphenol

Fenvalerate
Q—Iydramethylnon

Fulvestrant ResmeiT@ @ -

<] @ @

-4 -3 -2 -1 0 1
HTPP AED 5" [log,,(mg/kg-bw/day)]

HTPP AED 5th)
SEEM3 95t

unpublished

= for a small set of chemicals, the BER was negative, indicating a potential for humans to be exposed

to bioactive concentrations of these chemicals



SEPA Conclusions |

Toxicology and Applied Pharmacology 389 (2020) 114876

Contents lists available at ScienceDirect

Toxicology and Applied Pharmacology

journal homepage: www.elsevier.com/locate/taap

Bioactivity screening of environmental chemicals using imaging-based high- | #)
throughput phenotypic profiling g

Johanna Nyffeler™", Clinton Willis™, Ryan Lougee™", Ann Richard”, Katie Paul-Friedman®,
Joshua A. Harrill®*

HTPP in vitro potencies can be used for bioactivity exposure ratio
analysis and prioritizing of chemicals based on inferred bioactivity in
relation to predicted human exposure

Next steps:
 Test chemicals in multiple cell types to increase biological coverage
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DIScovery

Advancing Life Sciences R&D

Optimization of Hit Identification

Comparison of Approaches for
Determining Bioactivity Hits

from High-Dimensional Profiling Data

Johanna Nyffeler'?, Derik E. Haggard!?, Clinton Willis'3, R. Woodrow Setzer!, Richard Judson?, Katie Paul

Friedman!, Logan J. Everett!, loshua A. Harrill*
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Challenges in analysis of profiling data
Targeted assays Profiling assays
* Response is predictable * Measure 100s — 1000s of features

. » - not feasible to define a threshold
Often have a positive control for each feature in an analogous

e Often have known negative controls manner to targeted assays.

* Multiple diverse phenotypes can be
observed N
— no single ‘positive control’

* Multiple testing problem can lead to
identification of false actives

=>» Use of positive and negative
controls to set a threshold for hit calls

— -+ Negative distribution ==+ Threshold BN False negative
- Positive distribution A False positive

L

1
~. I

00 02 04 06 08 1.0 12 =» How should thresholds be chosen to

Score

https://www.researchgate.net/profile/Denis_Reis/publication/327847657/figure/figl/AS:6744467633807 e n S u re re I I a b I e h It Ca I I S ?

38@1537812047280/Threshold-and-score-distribution-for-a-binary-classification-process.png

= no widely accepted standard practices for hit identification from phenotypic
I profiling data = potential barrier for regulatory applications




SEPA Challenges of environmental chemicals

 Often low expected bioactivity
 Often lack a specific molecular target in human-based cell models
* ‘poly-pharmacology’

 Responses can be associated with general cell stress

= more challenging for hit identification than drug-like chemicals
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100 100 | 100 | 100 ; 100 : 100 : 100 { 100 | 100 : 100 | 100 | 100 {100 | 100 | 100 100 | 100 | 100 :

 Data from the APCRA set
* Well-level data for 478 chemicals
* 8 concentrations
* 4 biological replicates

| stauro IDMSO"
' Stauro  DMSO -
' Stauro ; DMSO -
 Stauro : DMSO -

DMSO :
SES DMSO"
Stauro {p]\e):
Stauro {1p]\e):

03:03:03;03:03:03:03:03:03:03;03;03:03:03:03:03:{03:03;03;03
01:01:01/01:01:01;01:01{01:01;01}{01:01:01:01:01{01:01;01;01

* Constructed a null data set
e Sampling of well-level data from the lowest two tested concentrations of test chemicals
* 108 ‘null chemicals’ were generated, with 8 concentrations and 4 biological replicates
—> False positive rate

A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D

* Reference chemical berberine chloride
* 12 independent replicates
- True positive rate

* Test chemicals run in duplicates
e 16 test chemicals were screened twice
—>Concordance

= 15 different approaches were compared at a fixed false positive rate of ~10%


Presenter
Presentation Notes
Parameters that were “tuned” to achieve false positive rate included:
Cutoff threshold (based on variance of solvent controls)
Hit call probability for tcplfit2
Threshold for effect size for BMDExpress or…,
Threshold for signature generation
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Different approaches to identify hits

multi-concentration approaches

single-concentration approaches

Dimensions

1300

~260

49

Feature-level data

Feature-level fitting |

BMDExpress
or
teplfit2

Yy

' Feature

' reduction
within gene set
categories enrichment

. analysis

Mahalanobis
distance

v v

Category-level
aggregation

Category-level
fitting

/

Y

-

: Feature reduction

v

Eigenfeature-level data

Euclidean distance

Mahalanobis
distance

o
-
o
-

l

—

Eigenfeature-

. Sign
h 4

ature generation '

level fitting |

S

ignature

b=

Signal strength
* on plate level
* on doseplate-level

Profile correlation
among biol. replicates

W

5

/

Hit call & potency estimate

Hit call

/

approach

previously used

potency estimate = phenotype altering concentration = PAC

Nyffeler et al. 2020b




SEPA Metrics

* False positive rate (FPR) = % of null chemicals that are positive
* Null sets are constructed from the lowest 2 concentration of all test chemicals

 True positive rate (TPR) = % of APCRA Berberine that are positive
* Berberine chloride: weak chemical with specific effects in only 100-200 features
- most closely resembles expected behavior from positive test chemicals
* Hit rate = % of test chemicals that are active

 Concordance:
* % of test chemicals with concordant hit calls (all inactive or all active)
* Number = # chemicals that are active

Thresholds for each approach were individually optimized for
1. False positive rate of ~ 10%
2. Highest true positive rate (100%)
3. Best possible concordance & high hit rate
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Feature-level fitting (BMDExp) -
Feature-level fitting (tcplfit2) -
Eigenfeature-level fitting -
Category-level aggregation (BMDEXxp) -
Category-level aggregation (tcplfit2) -
Category-level fitting Mahalanobis -
Category-level fitting ssGSEA -
Global Mahalanobis -

Global Euclidean -

Signal Strengh overall F

Signal Strengh plate-wise F -

Profile Correlation F -

Signal Strengh overall E -

Signal Strengh plate-wise E -

Profile Correlation E -

¢ n O A
¢ E &
@ E O A
® | S A
o = S A
W E O A
¢ u O A
o 5 o A
o B O A
o H O A
@ | O A
® E O A
" - 1® A
¢ B A
¢ &l A
20 40 60 80 100

O <

False positive rate

True positive rate

Concordance of
duplicate chemicals

Hit rate of
test chemicals

= 11/15 approaches identified 100% of true positives
= Hit rate is overall between 50-70%

Optimizing approaches to achieve equivalent false discovery rate

Nyffeler et al. 2020b


Presenter
Presentation Notes
Parameters that were “tuned” to achieve false positive rate included:
Cutoff threshold (based on variance of solvent controls)
Hit call probability for tcplfit2
Threshold for effect size for BMDExpress or…,
Threshold for signature generation


<EPA Concordance of hit calls across approaches (l)

Environmental Protection
Agency

B bioactive
O inactive

. test chemical (n=475) single-concentration
eference chemical (n=48 multi-concentration

null chemical (n=108)

|

Signal Strengh plate-wise F W|
Signal Strengh plate-wise E
Profile Correlation E | | HP
Signal Strengh overall E I | || }
Profile Correlation F |l |
Signal Strengh overall F ||
Eigenteature-level fitting 11 11| |
Global Mahalanobis ( | ‘
Global Euclidean ‘l 1 0
Category-level fitting ssGSEA | l ||
Category-level aggregation (BMDEXxp) |
Feature-level fitting (BMDEXp) |
Category-level fitting Mahalanobis

|0
Category-level aggregation (tcplfit2) ‘ ] | IIH

|
||
]
I

I| IF!

Feature-level fitting (tcplfit2) |H |H ’
\_Y_/ \ . J
inactive active
with all methods with all methods Nyffeler et al. 2020b

= Large amount of chemicals that are unanimously identified as active/inactive




vm!;gggsa,P tttttt Concordance of hit calls across approaches (i)
B
null chemicals test chemicals
4568 10

= 87% of null chemicals were = 51% of test chemicals were active in
inactive in 9 or more approaches 9 or more approaches

= 30% of test chemicals were inactive
in 9 or more approaches

Nyffeler et al. 2020b
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For 81% of the test chemicals, 9 or more methods agree.


[ o)
-, [ e [ e
SEPA  Concordance of hit call associated with signal strength
Agency
A B
E Sum
Sample type o
2.0- e 0
null

° 1

@ reference chemical —
— - @ 2

T ® test chemical ° +
< 1.5 g o 3
g ® S 4

@
£ & 5

0 —_
TEU, 1.0~ % 6
o < 7
E 3 .o
2 05- - . 9

e 10
1l e ° @ ° 11
00- l%} s 0.0 3P g o
T T ; ' T ; T ; T ; null  reference test

O 1 2 3 4 5 6 7 8 9 10 11 chemicalchemical chemical
# of approaches the chemical was identified as active

Nyffeler et al. 2020b




SEPA Concordance of potency estimates (1)

Agency

12 repetitions of each reference chemical

 Does the approach always estimate the same potency?

Berberine chloride Ca-074-Me Etoposide Rapamycin PAC:
Feature-level fitting (BMDEXp) - % i ® @ E:ﬁ::;::;iig:ermg
Feature-level fitting (tcplfit2) - 4 b 3
Eigenfeature-level fitting - o‘@ 5) @é) 0@ 0133 tested
Category-level aggregation (BMDEXxp) - 8 @ ’ (] aﬁ 5—& concentration
Category-level aggregation (tcplfit2) - ° & l @3 O% range
Category-level fitting Mahalanobis - @D l @O cﬁ
Category-level fitting ssSGSEA - stb o —{F—o ° 4B ° %
Global Mahalanobis - b A¥ | =
Global Euclidean - esth—| o e AP 4B

2 4 0 1 2 41 0 1 2 4 0 1 -2 -1 0 1
PAC log;o(uM)
\ J | J

Some approaches have Approach estimates
more variation than others the same potency

Nyffeler et al. 2020b
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Concordance of potency estimates (ll)

Null chemicals Duplicated chemicals

Does the approach produce many high-

How much do the potencies of the
potency false positives?

replicates vary from each other?

Feature-level fitting (BMDEXxp) - ) @O@p Feature-level fitting (BMDEXxp) @ °
Feature-level fitting (tepifit2) ’ — Feature-level fitting (tcplfit2) 1 @o ] o} o
Elgenfeatgre-level fitting - Y Eigenfeature-level fitting 1 {§ o F—oe
Category-level aggregation (BMDEXp) - r o—mg@'m Category-level aggregation (BMDEXp) - @@.8
Category-level aggregation (tepifit2) - - =1_olo Category-level aggregation (tcplfit2) - O_Q'@_O
Cat -level fitting Mahalanobis -
ategory-ievel T mg_ _ analanobis %% Category-level fitting Mahalanobis - % ®
Category-level fitting ssGSEA - o G‘é@ Category-level fitting ssGSEA - D
Global Mahalanobis i Global Mahalanobis{ | ©
Global Euclidean - o 4B b
: ; Global Euclidean+ &ffp J==
PAC logo(uM) 0.0 0.5 1.0
PAC range

= Feature-based approaches (including category-level aggregation) have a higher
risk of false positive, highly potent results

Nyffeler et al. 2020b
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Concordance of potency estimates (lll)

Test chemicals

For each chemical Test chemicals (n=227)
1.  Calculate the median potency across Feature-level fitting (BMDEXp) - —T+
all 9 approaches Feature-level fitting (tcplfit2) - I
Eigenfeature-level fitting -
2.  Calculate for each approach the c genieatrereve 1 mg_ —Eﬂ—
) ) . ategory-level aggregation (BMDExp) % -;ﬁ- :
difference to this median Category-level aggregation (tcplfit2) -
Category-level fitting Mahalanobis - : : —@.— I
Category-level fitting ssGSEA - =l
Is an approach rather Global Mahalanobis - il
underpredicting or overpredicting Global Euclidean - : _Om_ :
the potency of a chemical? Difference to median

= Feature-level approaches result in highest potency
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Category-level fitting of Mahalanobis
distances gives similar results to the previous
category-aggregation approach

sSGSEA is less sensitive, produces higher

BMCs and identifies fewer categories as

affected

In some cases categories associated with the

known phenotype of reference chemicals
were not identified with ssGSEA.



Conclusions on individual approaches

Feature-level methods:
* high hit rate, but high risk of high-potent false positives

Category-level aggregation:
* alleviate the problem of highly potent false positives slightly

Category-level fitting Mahalanobis:
* Worked surprisingly well! _
Category-level fitting ssGSEA:

* Was not sensitive in picking up one of the reference chemicals; gives lower potencies

Global Mahalanobis:

e Computationally fast (only 1 curve modelled), worked well _

Global Euclidean:
* Computationally fast + simple, but low sensitivity (TPR), low concordance
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 Reanalysis of the APCRA data set increased our confidence in the data
* Constructing a null data set is useful to evaluate method performance
e All approaches had a similar hit rate (50-70%)

* For 81% of chemicals, at least 9/11 approaches agreed
- we have high confidence in the resulting hit calls

Next steps:

* Analyze a screen of ~1200 chemicals with the category-level Mahalanobis and global
Mahalanobis approaches.




Thank you for your attention!

Questions?

Nyffeler.Johanna@epa.gov
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