

Chemical toxicity assessment using high-throughput transcriptomics and next generation sequencing: A case study of per- and polyfluoroalkyl substances

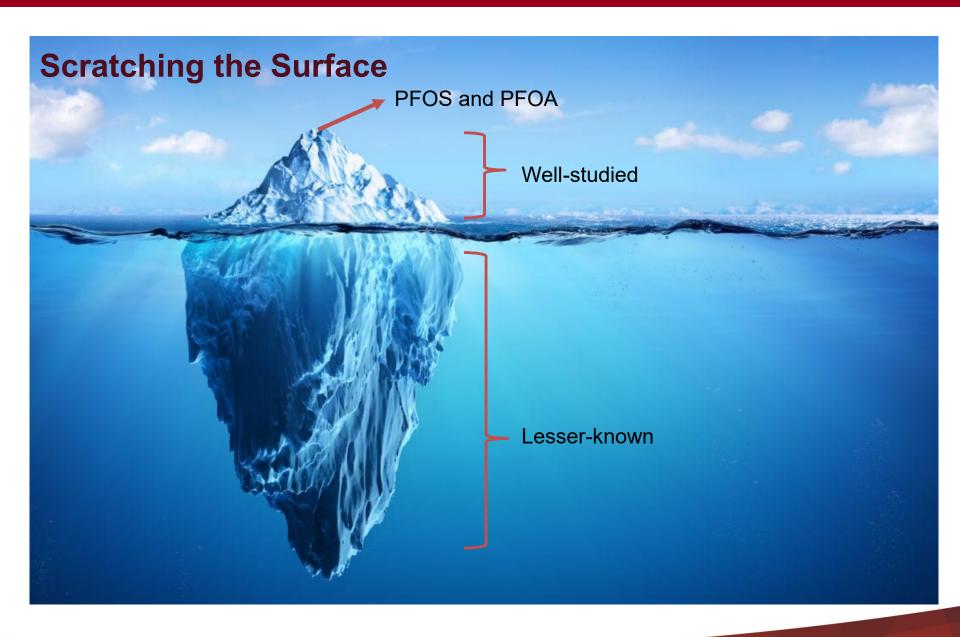
A.J.F. Reardon¹, A. Rowan-Carroll¹, S.S. Ferguson², R. Gagne¹, B. Kuo¹, K. Leingartner¹, A. Williams¹, L. Lorusso³, J.A. Bourdon-Lacombe⁴, R. Carrier⁴ I. Moffat⁴, C.L. Yauk¹, E. Atlas¹

¹Environmental Health Science & Research Bureau, Health Canada, ²US National Institute of Environmental Health Sciences, ³Chemicals & Environmental Health Management Bureau, Health Canada, ⁴Water & Air Quality Bureau, Health Canada

SRA-DSRG Webinar, March 2, 2021

Per- and Polyfluoroalkyl Substances (PFAS)

- Per- and poly-fluoroalkylated substances (PFAS) are a class of chemicals that are ubiquitously found in the environment due to their wide use, persistence and high mobility.
- PFAS can contaminate drinking water and soil in proximity to locations where fire-fighting foams are used including fire fighting training areas at airports and military bases.
- There is a growing body of knowledge on PFOS and PFOA toxicity; however, little is known about the many other PFAS


Exposure and Regulation in Canada

- Chemical persistence and broad use have led to wide-spread human exposure
- **Drinking water screening values** have been developed for PFOS, PFOA and 9 additional PFAS at the request of several provinces
- In 2018, drinking water guidelines were published for PFOS and PFOA, and screening values were updated
- Soil Quality Guidelines for PFOS and PFOA are currently being developed. Soil screening values are currently available for 9 PFAS compounds (including PFOS and PFOA).

2018 https://www.canada.ca/en/healthcanada/services/environmental-workplace-health/reportspublications/water-quality.html#tech_doc

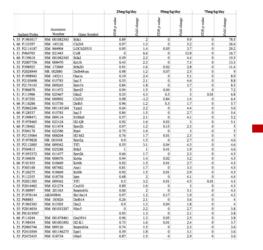
Scratching the Surface

Thousands of PFAS!

The Challenge

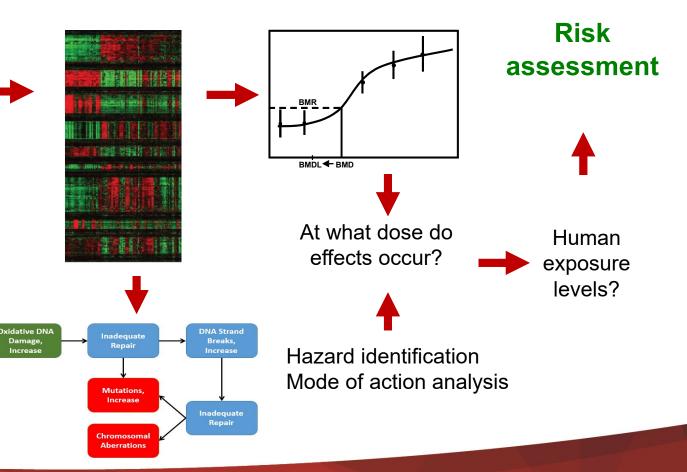
- Gathering data on lesser-known chemicals
- Current approaches in toxicology cannot address all of these chemicals

New Approach Methodologies (NAMs)

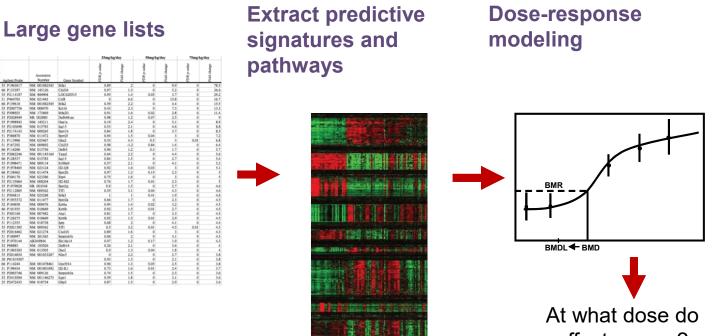

New Approach Methodologies

- The term new approach methodologies (NAMs) has been adopted as a broadly descriptive reference to any non-animal technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment." (NIEHS roadmap, 2017)
- US EPA directive to reduce (by 2025) and subsequently eliminate (by 2035) the use of animal models in toxicological assessment

Long-term vision of transcriptomics in regulatory decision making


Large gene lists

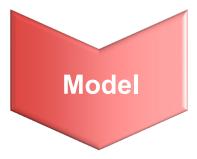
Extract predictive signatures and pathways


Dose-response modeling

Case studies

Align to AOPs

Short-term


- effects occur?
- Identify similarities in gene expression (mode of action across chemicals)
- Compare chemical potency (Dose-response)
- Compare human exposure levels for risk evaluation (where applicable)

Objectives and Approach

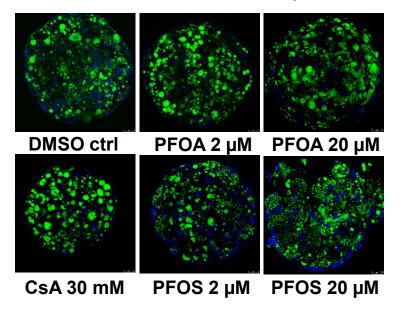
- **Overarching:** Use gene expression profiling to acquire information on PFAS to for application toward human health risk assessment
 - Conduct a high-throughput transcriptomic dose-response and time series analysis of primary human liver spheroids exposed to PFAS
- Experiment 1 Microscopy
 - Microscopic characterization of biochemical responses of spheroids to PFAS (staining for markers of toxicity)
- Experiment 2 Time-series, dose-response analysis of prototype PFAS
 - Cytotoxicity assessment and Tempo-Seq analysis
 - Development of bioinformatics pipeline
- Experiment 3 Prioritize PFAS and mixtures; time- and dose-response
 - Establish potency ranking within the class of PFAS

Confirming the model

In vitro model to predict human responses

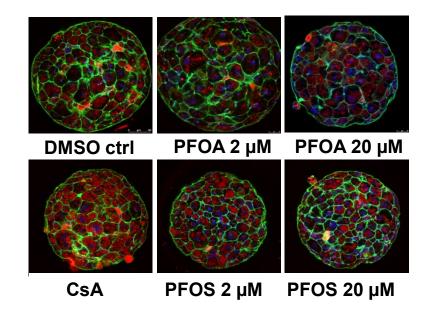
Primary human cell spheroids:

- Spheroid hepatocytes and Kupffer cells
- Pooled samples from 10 donors
- Toxicological model representation of liver tissue



Microscopy images of primary human liver spheroids

In vitro model to predict human responses


Lipid accumulation Blue=nuclei, Green=lipids

Model

Xenobiotic metabolism marker

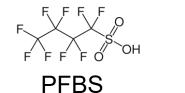
Red=CYP3A4, Blue=Nuclei, Green=actin

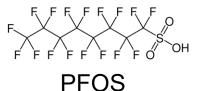
(100x magnification) • Cyclosporin A (CsA) – known inducer of steatosis

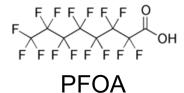
Objectives and Approach

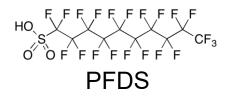
- **Overarching:** Use gene expression profiling to acquire information on PFAS to facilitate read-across for human health risk assessment
 - Conduct a high-throughput transcriptomic dose-response and time series analysis of primary human liver spheroids exposed to PFAS
- Experiment 1 Microscopy
 - Microscopic characterization of biochemical responses of spheroids to PFAS (staining for markers of toxicity)
- Experiment 2 Time-series, dose-response analysis of prototype PFAS
 - Cytotoxicity assessment and Tempo-Seq analysis Development of bioinformatics pipeline
- Experiment 3 Prioritize PFAS and mixtures; time- and dose-response
 - Establish potency ranking within the class of PFAS

Experimental design

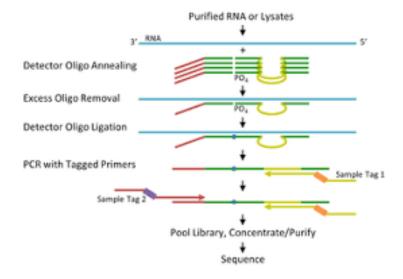

Overview of experimental design


Exposure

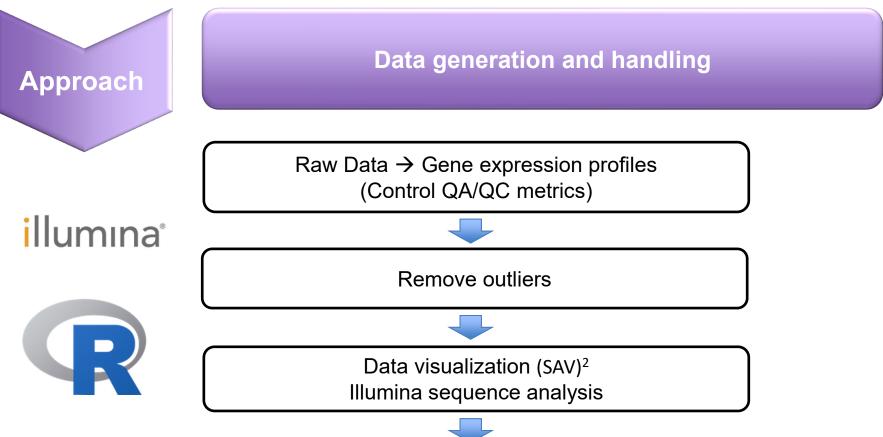

- 4 PFAS (replicates = 4)
- Dose range (0 to 100 µM)
- Time series (1, 4, 10 and 14 days)


Assessment

- 1. Cytotoxicity
- 2. Genomic responses
- 3. Predicting mode of action, and potency



High-throughput transcriptomics



Data generation and handling

- TempO-seq platform (Biospyder) library generation for sequencing from lysates
 - **S1500** gene panel (3000 genes)
- DNA sequencing to quantify the abundance of sister probes that target RNA molecules of interest
- Production of gene expression data

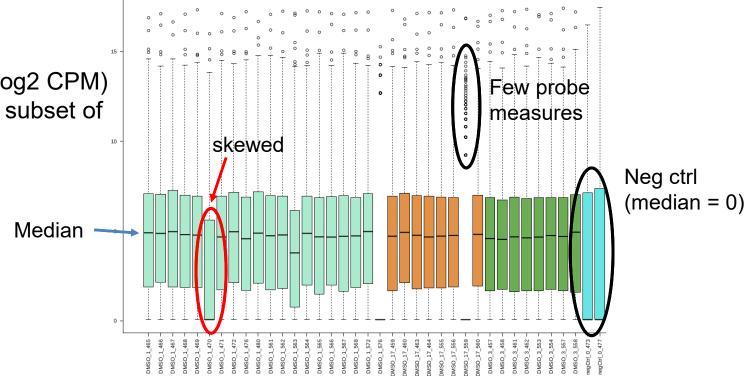
Bioinformatics pipeline development


Reads extracted from the bcl files from the sequencer (with bcl2fastq v. 2.20.0.42)
→ Fastq files are processed with the "pete.star.script_v3.0" (supplied by Biospyder)
→ Script uses star v.2.5 to align the reads and the qCount function from QuasR

Examine sample coverage and mapping

Data generation and handling

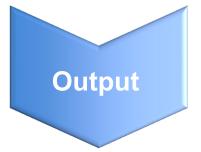
Total mapped reads versus the percentage of mapped reads for each sample



Probe distribution among each sample

Data generation and handling

Probe measure (log2 CPM) distributions for a subset of samples.



Specific PFAS induce cytotoxicity at higher exposures

20

(Ratio 10 .

H

Cytotoxicity over 14-Day exposure (Lactate dehydrogenase assay - LDH)

PFOA

LDH Release by Human Liver Spheroids

PFOA 0.02 uN

PFOA 0.1 uM PFOA 0.2 uM

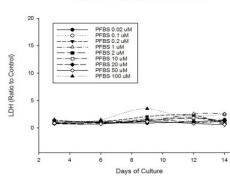
PFOA 1 uM

PFOA 2 uM

PFOA 10 uM

PFOA 20 uM

PFOA 50 uM


PFOA 100 uM

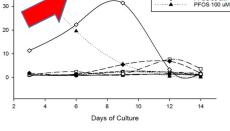
12

14

PFBS

No observed

cytotoxicity

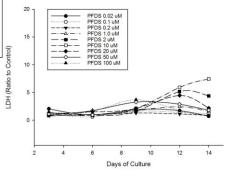

LDH Release by Human Liver Spheroids PEOS 0.02 uM PFOS 0.1 uM PEOS 0.2 uM PFOS 1 uM PFOS 2 uM PFOS 10 uM PFOS 20 uM PFOS 50 uM

PFOS

50

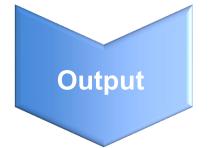
40

-DH (Ratio to Control)


- 100 µM cytotoxic (Day 8 - cell death)
- 50 µM steadily ↑ cell death
- 100µM ↑ Cytotoxicity until Day 8

Days of Culture

 50µM ↑ Cytotoxicity after Day 8



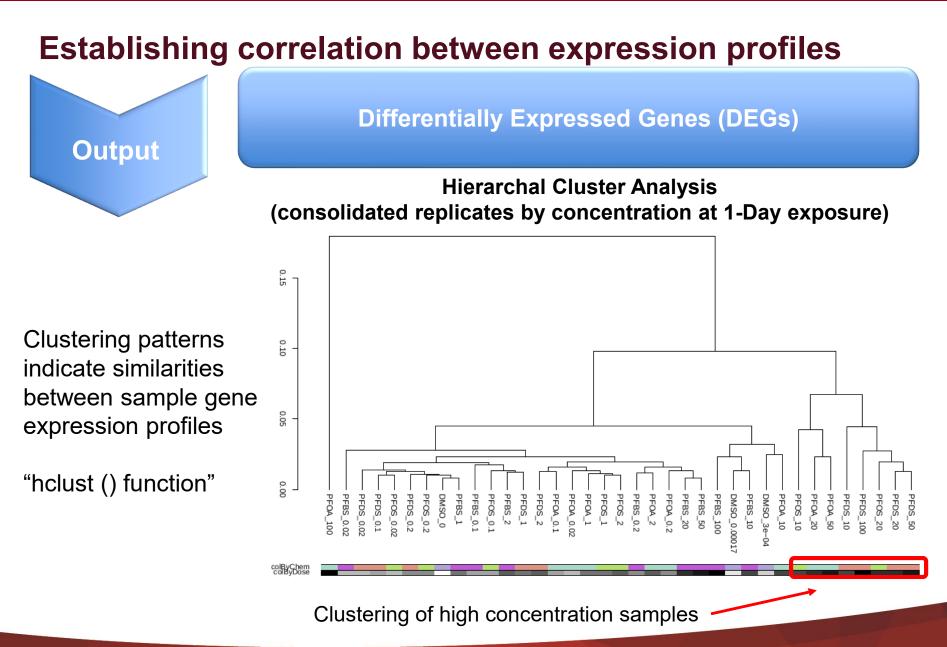
- 50 & 100 µM (Day 8/10)
- \uparrow Cytotoxicity at 2, 10, and 20 µM (Day 10/12)

Increasing number of expressed genes with exposure

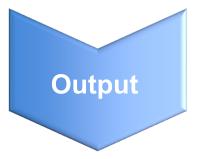
Differentially Expressed Genes (DEGs)

Gene	expression	
	_	

Exposure vs. Control (DMSO)

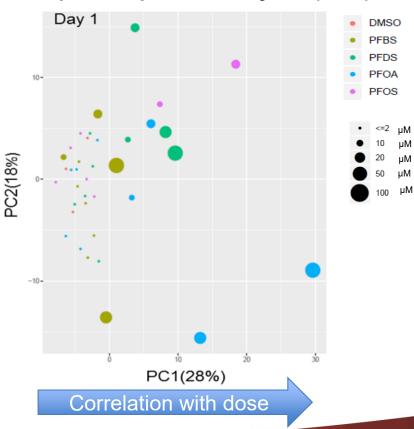

- 1.5-fold change
- p-value < 0.05 (FDR adjusted)

Expected patterns

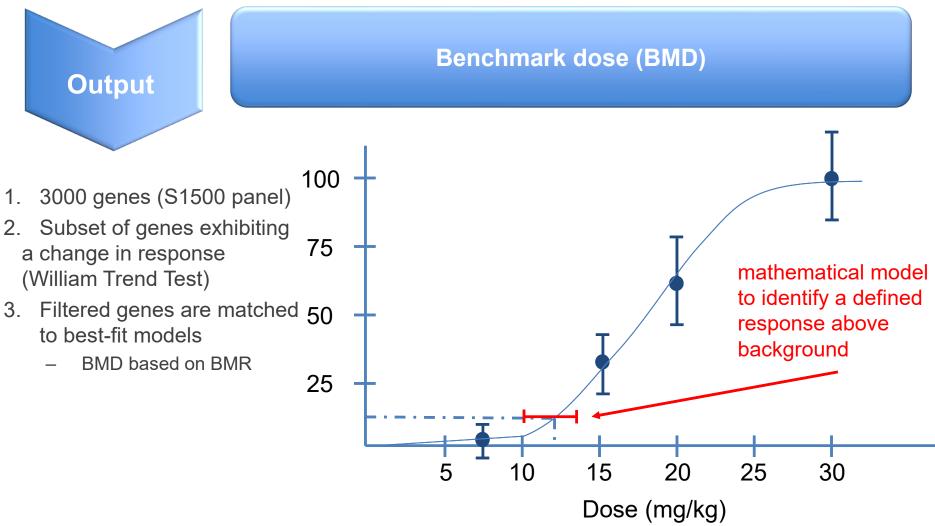

- ↑ DEGS from low to high dose
- Potency:
- PFOS >> PFBS

 $X \rightarrow$ removed 14 samples (cytotoxicity)

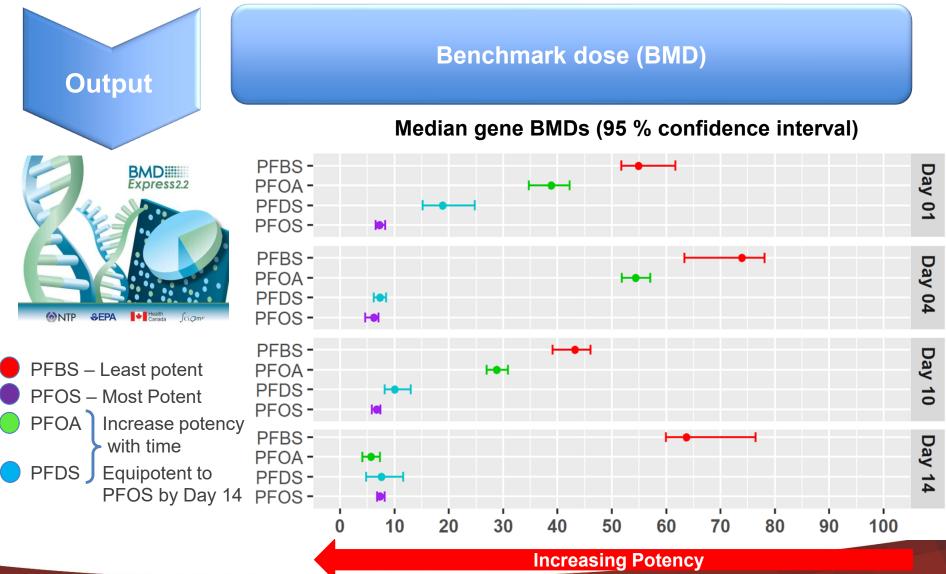
1-Day	μM	0.02	0.1	0.2	1	2	10	20	50	100
	PFOS	1	85	3	6	51	167	277	Х	Х
	PFOA	0	8	36	8	19	79	69	227	465
DMSO)	PFDS	0	1	0	6	22	59	81	177	186
	PFBS	0	1	0	5	49	5	0	44	73
4-Day	μM	0.02	0.1	0.2	1	2	10	20	50	100
	PFOS	0	3	7	20	35	246	285	Х	Х
	PFOA	1	0	17	25	12	30	68	186	822
	PFDS	0	3	0	2	4	268	211	220	274
	PFBS	7	2	0	15	0	3	0	23	84
10-Day	μM	0.02	0.1	0.2	1	2	10	20	50	100
10-Day	PFOS	2	7	4	6	60	163	466	Х	Х
	PFOA	14	7	2	4	10	82	101	593	Х
	PFDS	0	30	0	43	40	134	175	232	231
	PFBS	2	1	0	1	2	0	7	54	76
14-Day	μM	0.02	0.1	0.2	1	2	10	20	50	100
	PFOS	0	0	8	5	8	246	373	Х	Х
	PFOA	2	1	3	2	9	66	87	Х	Х
	PFDS	1	2	1	3	96	171	173	187	378
	PFBS	0	0	0	0	0	4	1	2	71

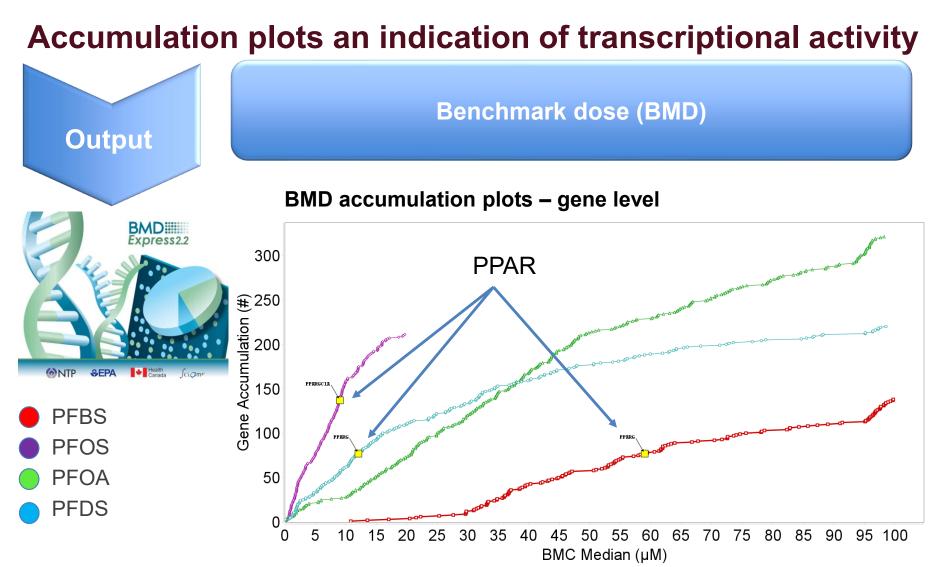

Highest source of variation with dose

Differentially Expressed Genes (DEGs)

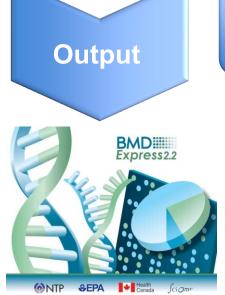

Method to reveal correlations with experimental conditions

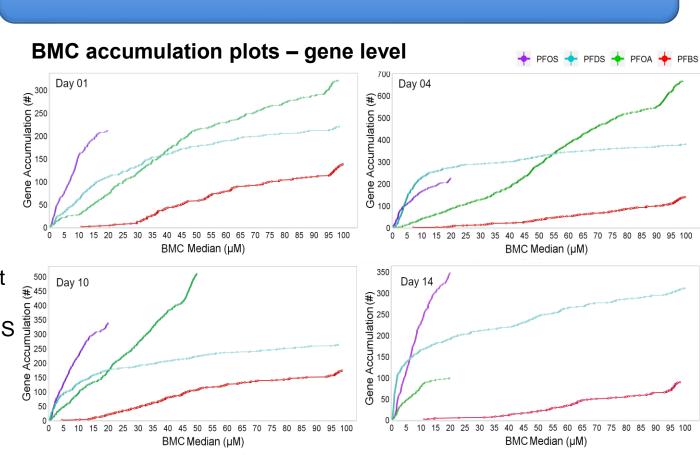
- Group
- Dose


Principal component analysis (PCA)


What is a benchmark dose?

Here, we use 1 standard deviation

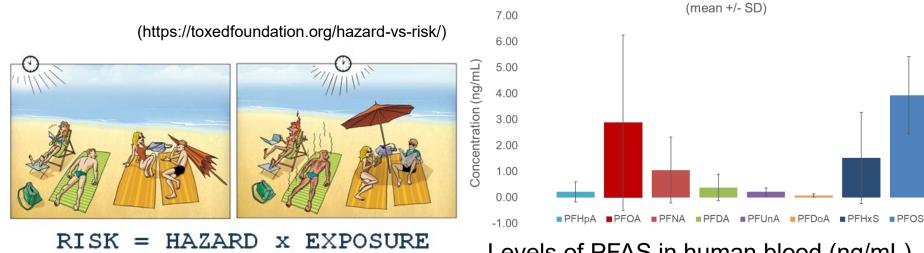

Increasing potency of PFAS with exposure time



-D-PFBS_Day 1_gene ->-PFDS_Day 1_gene ->-PFOA_Day 1_gene ->-PFOS_Day 1_gene

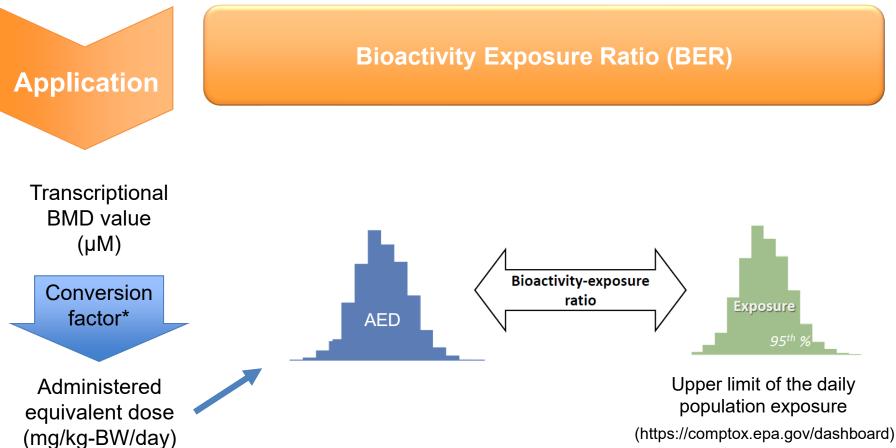
Initiation of transcription activity at low exposures

- Lowest effects occur at similar concentrations for PFOS, PFOA, PFDS (similar potencies)
- Transcriptional activity initiated: 1 – 15 µM


Benchmark dose (BMD)

Relevance of exposure in humans

Application


Toxicological relevance

• **Risk**: The *likelihood* that harm from a specific hazard will occur

Levels of PFAS in human blood (ng/mL) (Reardon *et al.* 2019)

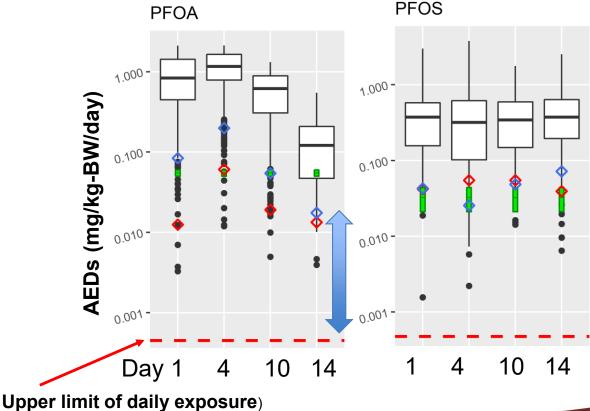
*The reverse dosimetry approach (Wetmore *et al.*, 2015) for PFOA and PFOS (as described in Wambaugh et al. 2013) was used to determine a conversion factor to calculate the administered equivalent dose from the benchmark concentration estimate of *in vitro* models.

PFOS and PFOA pose risk at current exposure levels

Application

Bioactivity Exposure Ratio (BER)

BER derived by 2 ways:


5th percentile gene

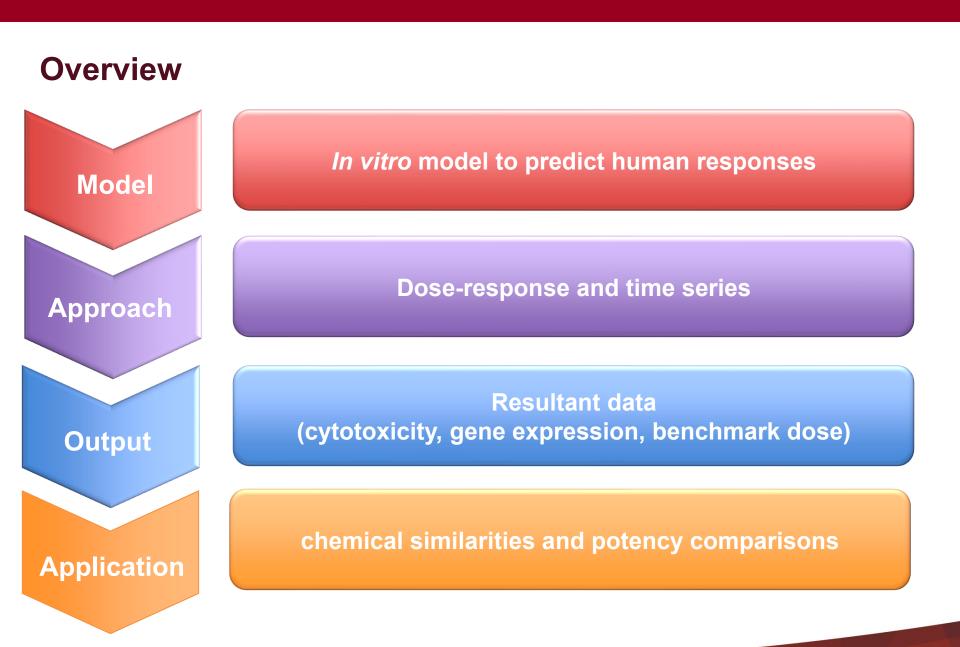
Lowest pathway

 Both approaches were consistent with the apical endpoint BER

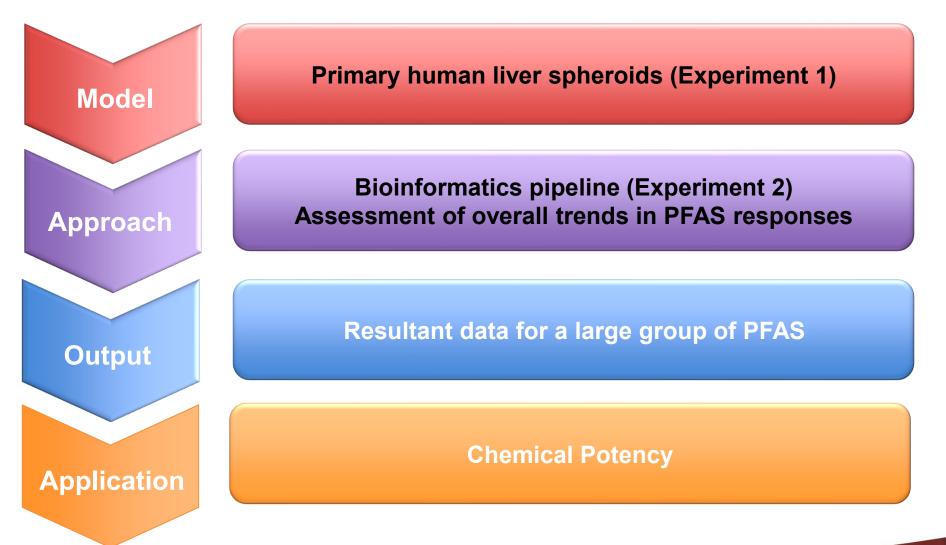
Animal PoD

 BERs <100, indicating a narrow margin for highly exposed humans levels

(<u>https://comptox.epa.go</u>v/dashboard).


Summary and conclusions

- This study developed a transcriptomic pipeline to distinguish similarities & differences between model PFAS
- The transcriptional BER was highly consistent with the apical endpoint BER in the HC drinking water guidelines → confidence to this NAM
 - PFAS exposure →transcriptional changes →BMD modelling for potency
 - PFAS became more potent over time
 - Longer-chain PFAS had similar patterns of potency
 - short-chain PFBS did not follow this pattern
 - Demonstrates the efficiency of high-throughput transcriptomics to provide valuable data to facilitate risk assessment


Rowan-Carroll *et al.* (preprint). High-throughput transcriptomic analysis of human primary hepatocyte spheroids exposed to per- and polyfluoroalkyl substances (PFAS) as a platform for relative potency characterization

Objectives and Approach

- **Overarching:** Use gene expression profiling to acquire information on PFAS to facilitate read-across for human health risk assessment
 - Conduct a high-throughput transcriptomic dose-response and time series analysis of primary human liver spheroids exposed to PFAS
- Experiment 1 Microscopy
 - Microscopic characterization of biochemical responses of spheroids to PFAS (staining for markers of toxicity)
- Experiment 2 Time-series, dose-response analysis of prototype PFAS
 - Cytotoxicity assessment and Tempo-Seq analysis
 - Development of bioinformatics pipeline
- Experiment 3 Prioritizing PFAS as a class; time- and dose-response
 Establish potency ranking within the class of PFAS

Overview

Scaling up to a larger number of PFAS

Overview of experimental design

Exposure

- 23 PFAS
- Dose range (0 to 100 µM)
- Time series (1, and 10)

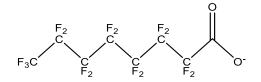
Data handling

• Use bioinformatics pipeline developed as part of experiment 2

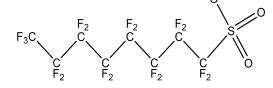
Assessment

- 1. Cytotoxicity (same approach as from experiment 2)
- 2. Genomic responses
- 3. Potency rankings

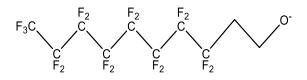
Scaling up to a larger number of PFAS



Overview of experimental design


Categorizing PFAS

Perlfuoroalkyl carboxylates (PFCAs)


Perlfuoroalkyl suflonates (PFSAs) PFAS precursors

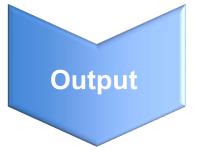
Perfluorooctanoate (PFOA)

Perfluorooctane sulfonate (PFOS)

8:2 Fluorotelomer alcohol (8:2 FTOH)

Longer-chain PFAS increase in DEGs with exposure

Shorter-chain PFAS do not show trend in DEGs

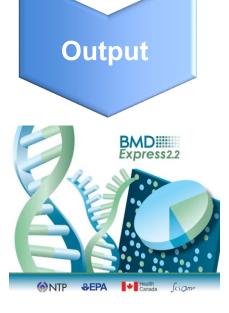

 Longer-chain PFAS increased DEGs with exposure conc.

							\		-	
щ	ا م م ا		Concentration (µM)							
# of carbons			0.2	2	10	20	50	100	_	
	4	PFBA	5	42	1	10	15	58	ר	
		PFPeA	-	1	2	2	-	-	┝	
S		PFHxA	119	43	22	60	101	24	J	
PFCAs		PFHpA	-	-	1	4	14	51		
Ц		PFOA	-	11	72	71	229	491		
		PFNA	3	-	37	167	236	785	L	
	L	PFDA	-	4	1	70	364	-		
		PFUnA ^A	40	20	119	227	826	-		
	14	PFTeA ^B	46	9	128	55	69	43		
S	4	PFBS	-	34	7	-	50	72	้า	
PFSAs		PFHxS	47	-	-	12	11	16	5	U
	1	PFHpS	-	1	14	26	61	225	٦	\bigtriangleup
		PFOS	1	50	171	295	-	-		
	10	PFDS	-	17	49	75	177	190		

Differentially expressed genes (DEGs)

Concentration of ^A PFUnA (0.13, 1.3, 6.5, 13, 34, 66 µM) ^B PFTeDA (0.06, 0.67, 3.35, 6.7, 17, 33 µM)

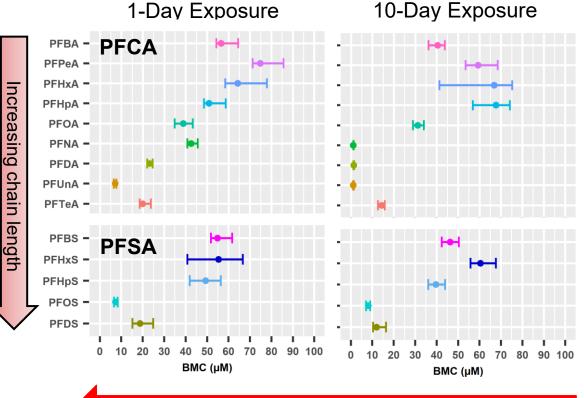
Most PFAS precursors have no discernable trend


Differentially expressed genes (DEGs)

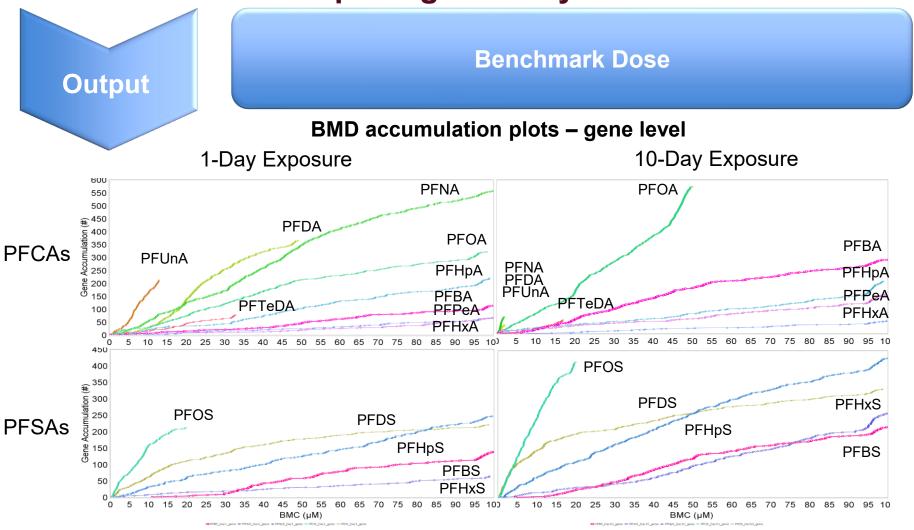
- Exception of PFOSA that increased in DEGs
- Non-monotonic dose response
 - DEG spike

Precursors

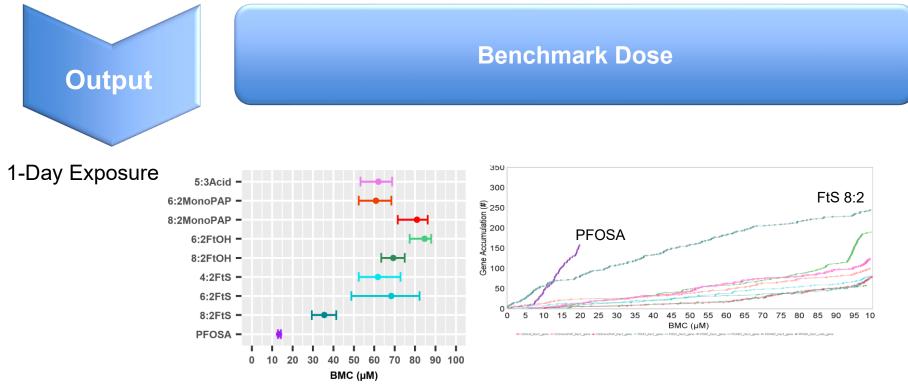
		0.2	2	10	20	50	100	
	Acid 5:3	-	3	-	9	8	23	ר
	MonoPAP 6:2	-	-	7	(190)	6	7	
)	MonoPAP 8:2	1	-	-	-	1	3	
)	FtOH 6:2	12	55	43	21	67	32	
	FtOH 8:2	-	7	-	9	-	-	
)	FTS 4:2	-	10	19	10	5	1	
1	FtS 6:2	3	5	15	6	69	7	
	FtS 8:2	4	29	56	127	212	237	
	PFOSA	10	30	18	141	799		


Increase potency with carbon chain length

- Increasing potency with chain-length within both subgroups
 Increased cytotoxicity of longer-chain length
 - PFCAs
 - PFNA
 - PFDA
 - PFUnA


Benchmark Dose

Median gene BMDs (95 % confidence interval)



Increasing potency

Gene accumulation plots get messy

PFAS precursors have no discernable trend

 PFOSA (a PFOS precursor) was found to exhibit the highest potency and transcriptional activity of this subgroup

Experiment 3 - Summary

- Relationships between chain length & extent of transcriptional alterations, and potency that emerged that can be used to inform read-across
- PFAS cause cytotoxicity in human liver cell spheroids & transcriptional changes at similar concentrations to PFOS and PFOA, suggesting these chemicals are harmful to human liver
- This case study is building confidence in the application of transcriptomic BMD modelling for:
 - Potency comparisons
 - Chemical prioritization, scoping/screening assessments

Reardon *et al.* (preprint). High-throughput transcriptomics and benchmark concentration modeling for potency ranking of per- and polyfluoroalkyl substances (PFAS) in exposed human liver cell spheroids

Thank You!

Funding

- Health Canada
 - Water & Air Quality Bureau (WAQB)
 - Chemicals & Environmental Health Management Bureau (CEHMB)

Support

- National Institute of Environmental Health Sciences (NIEHS)
 - Russell Thomas and Stephen Ferguson (National Toxicology Program)
- Colleagues at Health Canada
 - Mechanistic Studies Division