Advancing the use of transcriptomic points of departure for regulatory decision-making

Carole Yauk, GReAT Lab, Dept. of Biology, University of Ottawa

uOttawa.ca Society for Risk Analysis, Dose-response Specialty Group February, 2022

Collaborators

Health Canada

- Ella Atlas, Julie Buick, Andrew Williams, Rémi Gagné, Byron Kuo
- Andrea Rowan-Carroll, Karen Leingartner, Anthony Reardon
- Matthew Meier, Geronimo Parodi-Matteo
- Tara Barton-Maclaren, Francina Webster, Marc Beal, Matthew Gagné
- Ivy Moffat, Julie Bourdon-Lacombe, Luigi Lorruso, Christine Levicki
- Reza Farmahin, Marjory Moreau, Anne Gannon, Ivan Curran, Andy Nong

US NIEHS: Scott Auerbach, Steve Ferguson US EPA: Rusty Thomas

Université d'Ottawa University of Ottawa

Toxicity testing is changing!

All chemicals

Few chemicals

2012

Toxicological Testing Paradigms

In silico predictive toxicology

In vitro transcriptomics

High-throughput screening and targeted tests

> In vivo transcriptomics

Conventional tests

Challenge: How to efficiently analyze and interpret toxicogenomic (TGx) data?

Vision for use of transcriptomics in regulatory decision-making

In the near-term: does a transcriptomic POD (regardless of hazard) provide protection from potential human health effects?

Context of use: various applications in regulatory decision making

What are the regulatory concerns?

- Can we trust the new tools?
 - Validation sensitivity, specificity, reproducibility, accuracy
- Will we miss toxicological effects?
 - Have we covered enough biology? Can we predict toxicological effects?
- Gene expression changes \neq adverse phenotypic changes
 - Are we basing decisions on adaptive versus adverse effects?
- Gene expression changes are the first cellular responses
 - Will the dose at which we see responses be extremely low?
 - i.e., Are we being overly conservative?
 - » Not feasible in terms of risk management
- What is the uncertainty associated with these new approaches?
- How do we do it (experience needed), who will generate the data, and will it give us comparable results?

Health Canada Research-Regulatory Collaboration

Foundational studies: Most sensitive (lowest) pathway BMD provides a reasonable estimate of the PoD

Thomas et al., Tox Sci., 2013

Initial case study focus

Hazard-agnostic tPOD within 10-fold (or less) of regulatory PODs (early DNA microarray studies)

Similar conclusions from case studies on carbon black nanoparticles and acrylamide Many questions remaining about how to select a POD that represents a tipping point for adverse effects

Which tPOD?

• Different gene sets identify similar tPODs to each other and to apical endpoint PODs.

1- 20 lowest pathwa FDR P < 0.05, IPA e	y BMDs nriched	5- BMD value between 25th and 75th percentile				
2- 20 most significar FDR P < 0.05, IPA	nt pathways	6- Pathways with the highest number of connections to other pathways				
3- The lowest 20 pai ANOVA P <0.05, BM Viewer enriched	thways 1D Data	7- 20 genes that contribute to the greatest number of pathways				
4- 20 biggest fold ch	anges	8- Genes that are regulated by the top 20 most significant upstream regulators				
9- Lowest pathway	10- Pathway BM	/ID mean	11- Pathway BMD median			

Webster et a. PLoS One, 2015

What if we use a hazard-based approach?

What if we used a different platform?

Impacts of more rigorous filtering?

MOA-specific pathway BMDs consistent with apical endpoint BMDs

MoA pathways

- TGx BMD means are consistent across platforms
- TGx BMD means fall within interval between HCA and HCC
- Rigorous filtering had a small impact

Does this work for TGx biomarker gene sets? TGx-DDI biomarker BMC predicts the BMC of DNA damage

High-throughput <u>**CometChip**®</u> and <u>**TGx-DDI biomarker**</u> assay measured by TempO-seq in HepaRG cells.

Li, HH et al. *PNAS* (2017)

HESI

But how do we know we're not modeling noise?

- Need sufficient perturbations and rigorous filtering
- Gene sets to eliminate noise, or robust baseline required

Methods:	EMPIRICAL FALSE DISCOVERY RATE													
			Default Settings		Williams Trend Test		Background Filtering			Fold Change				
• HenaPC cells			Median #	25th	Lowest	Median #	25th	Lowest	Median #	25th	Lowest	Median #	25th	Lowest
	Study	Design	BMCs	Gene	Pathway	BMCs	Gene	Pathway	BMCs	Gene	Pathway	BMCs	Gene	Pathway
	S1500	4 doses, n = 6	8	0.20	0.14	2	0.05	0.05	4	0.12	0.10	1	0.05	0.05
 solvent controls 		6 doses, n = 4	8	0.17	0.17	2	0.02	0.03	4	0.11	0.11	1	0.03	0.03
assigned randomly to		8 doses, n = 3	8	0.17	0.16	1	0.00	0.01	5	0.13	0.11	2	0.08	0.10
'dose aroups'		12 doses, n = 2	6	0.10	0.10	1	0.01	0.01	3	0.08	0.07	2	0.07	0.06
acco groupe		4 doses, n = 12	1	0.01	0.02	0	0.00	0.00	0	0.00	0.01	0	0.00	0.00
		6 doses, n = 8	2	0.07	0.06	1	0.02	0.01	1	0.05	0.05	0	0.05	0.05
Run BMD analysis		8 doses, n = 6	5	0	0	2	0	0	2	0	0	0	0.04	0.03
 BMR 1SD and 		12 doses, n = 4	8	0.14	0.14	1	0.04	0.04	4	0.10	0.09	2	0.07	0.06
default filters in	Whole	4 doses, n = 6	2	0.05	0.06	1	0.00	0.00	1	0.00	0.00	1	0.00	0.00
BMDExpress	Transcriptome	6 doses, n = 4	15	0.12	0.07	2	0.00	0.00	7	0.02	0.01	3	0.00	0.00
DIVIDEXPICES		8 doses, n = 3	13	0.11	0.06	2	0.00	0.00	7	0.02	0.02	3	0.00	0.01
Derive PODs		12 doses, n = 2	10	0.07	0.06	1	0.01	0.01	5	0.04	0.03	4	0.04	0.03
		4 doses, n = 12	2	0.00	0.00	1	0.00	0.00	1	0.00	0.00	1	0.00	0.00
		6 doses, n = 8	5	0.01	0.01	2	0.00	0.00	3	0.00	0.00	0	0.00	0.00
Determine FDR of		8 doses, n = 6	9	0.02	0.03	2	0.02	0.01	5	0.02	0.01	1	0.00	0.00
PODs		12 doses, n = 4	14	0.13	0.07	3	0.01	0.00	7	0.03	0.03	2	0.00	0.00

Work done by Andrew Williams, Health Canada (channeling previous work by Scott Auerbach)

Recent Research-Regulatory case studies to advance our vision

#1. Tiered testing for human health risk assessment Hexabromocyclododecane (HBCD)

Objectives

- Gain experience in applying a tiered testing paradigm;
- Explore consistency across tiers;
- Evaluate use in risk assessment.

Gannon et al. *Food and Chemical Toxicology*, 2019.

Methods

· Signatures of toxicity

Gannon, Moreau, Farmahin et al. *Food and Chemical Toxicology*, 2019.

Transcriptomics is highly consistent with the other tiers for hazard ID

Confirmed effects observed in vivo

Hundreds of differentially expressed genes

Identified sex-specific effects

More changes in males than females

Genes were associated with pathways suggesting:

 Alterations in metabolism of xenobiotics and nuclear receptor activity, oxidative stress, cell proliferation and apoptosis, metabolism of glucose and lipid, immune response, fibrotic activity, and hormonal balance

Transcriptomic biomarker analysis revealed

 CAR and PXR biomarker activation at all doses in both sexes (no other biomarkers)

BMD analysis reveals bi-modal distributions and consistency between males (A) and females (B)

	Male	Female
Approach used to derive BMD	BMD (mg/kg.day)	BMD (mg/kg.day)
Median of significantly enriched pathway BMDs	77	73
20 genes with the largest fold changes	84	65
Lowest statistically significant pathway	66	71
Lowest overall pathways (5% and min 3 genes)	7.2	3.2

Tier 2 is highly overlapping with Tier 3

 human oral equivalent doses for ToxCast AC50s & rat liver transcriptomic BMDs, compared to apical endpoint BMDs in rats and relative to human exposure (Canadian Health Measures survey)

0.000001

2019.

#2. PFAS regulatory needs

- Understand potential toxicity and potencies of emerging PFAS
- Acceptable concentrations of PFAS in drinking water and for cleanup of contaminated sites
- Prototypes for comparison PFOA and PFOS

Methods

Perfluorooctanoic acid PFOA (C8)

Perfluorodecane Sulfonic Acid PFDS (C10)

- 10 concentrations, 4 time points (1, 4, 10 and 14 days)
- Media changed every three days and cytotoxicity monitored

Rowan-Carroll et al., Tox Sci 2021

Median gene BMC (central measure of activity) Potency comparison of prototypes: PFOS > PFDS > PFOA > PFBS

Potency: PFOS > PFDS > PFOA > PFBS

🔶 PFOS 🔶 PFDS 🔶 PFOA 🔶 PFBS

- Lowest effects occur at similar concentrations for PFOS, PFOA, PFDS (similar potencies)
- Transcriptional activity initiated: 1 – 15 µM
- PFOS has more genes fitting BMC models below 20 (biological activity)
- Potential use of liver toxicity thresholds (Ramaiahgari SC et al. *Tox Sci* 2019)

Université d'Ottawa 🧧 University of Ottawa

tPODs for PFOA and PFOS consistent with apical PODs and potential for human health risk

5th percentile gene

Conventional tests

Decreasing BMC with increasing PFAS chain length

- Analysis separated by functional groups
- Relationship between chain length and potency
- Use of information for read-across to inform data-poor and untested PFAS

Reardon et al. Tox Sci, 2021

#3. Bisphenol and bisphenol replacements: tPODs to compare potencies and identify active/inactive chemicals

#3. Bisphenol and bisphenol replacements: tPOD approach identifies active/inactive chemicals and enable potency ranking

ΕΚα		Lowest Pathway			
Prediction	25th gene	Median	IPA ER Median	ERα BM Median	
Agonist	0.003	0.0018	1.1	4.59	
Agonist	0.006	0.0053	11	0.03	
Agonist	0.054	0.0604	6.7	0.44	
Agonist	0.154	0.1406	0.7	0.66	
Agonist	0.174	0.1170	4.5	2.47	
Agonist	0.494	0.3252	1.5	2.59	
Agonist	0.861	0.7511	4.1	5.04	
Agonist	3.102	2.3989	7.1	29.08	
Inactive	4.172	3.5581			
Inactive	7.715	4.8011			E
Agonist	8.774	7.2158	1.5	54.45	
Agonist	8.999		20		
Inactive					E
Antagonist					
Inactive					1
Inactive					J
	Prediction Agonist Agonist Agonist Agonist Agonist Agonist Agonist Inactive Inactive Agonist Inactive Agonist Inactive Antagonist Inactive	ERαPrediction25th geneAgonist0.003Agonist0.054Agonist0.154Agonist0.174Agonist0.494Agonist0.494Agonist3.102Inactive4.172Inactive8.774Agonist8.999Inactive1Antagonist1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1Inactive1	ERαLowest PathwayPrediction25th geneMedianAgonist0.0030.0018Agonist0.0060.0053Agonist0.0540.0604Agonist0.1540.1406Agonist0.1740.1170Agonist0.4940.3252Agonist0.8610.7511Agonist3.1022.3989Inactive4.1723.5581Inactive7.7154.8011Agonist8.999Inactive1.174Antagonist1.172Inactive1.172Inactive8.174Inactive1.174Inactive1.172Inactive <td>ERαLowest PathwayPrediction25th geneMedianIPA ER MedianAgonist0.0030.00181.1Agonist0.0060.005311Agonist0.0540.06046.7Agonist0.1540.14060.7Agonist0.1740.11704.5Agonist0.4940.32521.5Agonist0.8610.75114.1Agonist3.1022.39897.1Inactive7.7154.80111.5Agonist8.7747.21581.5Agonist8.9992020Inactive</td> <td>ERαLowest PathwayIPA ER MedianERα BM MedianAgonist0.0030.00181.14.59Agonist0.0060.0053110.03Agonist0.0540.06046.70.44Agonist0.1540.14060.70.66Agonist0.1740.11704.52.47Agonist0.4940.32521.52.59Agonist0.8610.75114.15.04Agonist3.1022.39897.129.08Inactive4.1723.558154.45Agonist8.7747.21581.554.45Agonist8.99920InactiveInactiveInactiveInactiveInactiveInactiveAntagonist0.44InactiveI</td>	ERαLowest PathwayPrediction25th geneMedianIPA ER MedianAgonist0.0030.00181.1Agonist0.0060.005311Agonist0.0540.06046.7Agonist0.1540.14060.7Agonist0.1740.11704.5Agonist0.4940.32521.5Agonist0.8610.75114.1Agonist3.1022.39897.1Inactive7.7154.80111.5Agonist8.7747.21581.5Agonist8.9992020Inactive	ERαLowest PathwayIPA ER MedianERα BM MedianAgonist0.0030.00181.14.59Agonist0.0060.0053110.03Agonist0.0540.06046.70.44Agonist0.1540.14060.70.66Agonist0.1740.11704.52.47Agonist0.4940.32521.52.59Agonist0.8610.75114.15.04Agonist3.1022.39897.129.08Inactive4.1723.558154.45Agonist8.7747.21581.554.45Agonist8.99920InactiveInactiveInactiveInactiveInactiveInactiveAntagonist0.44InactiveI

- Lowest Pathway Median
- 🔶 25th Gene
- IPA ER Median
- ERα BM Median

Rooney et al. Chem Res Toxicol. 2021

Gene set enrichment analysis of genes fitting BMC models (concentration-responsive genes) reveals high similarity across the chemicals

What does this mean?

- Dose at which we see transcriptional perturbations (i.e., tPOD) in short-term studies predicts the dose at which adverse effects occur following longer-term exposures
- tPODs are generally conservative, but not overly conservative
- A variety of approaches work, both hazard-based and agnostic
 - When the transcriptome is robustly perturbed, prolonged exposed at this dose is likely to lead to adverse health consequences
- Approach taken should be <u>context specific</u>
 - Selecting the lowest tPOD is protective of adverse health effects
- Case studies useful for informing regulatory applications and building confidence

Major needs

- Socialize this idea
 - Paradigm-changes are challenging
- Establish best practices for deriving tPODs for different contexts of use
 - OECD Transcriptomic Reporting Framework has a BMD module, which ensures transparency in regulatory submissions and may facilitate developing acceptable practices
- Identify model-specific baseline filtering requirements
- Studies to establish confidence that hazard-agnostic tPOD can be protective of human health effects
- Demonstrate applicability across broad chemical and biological space
 - Critical to mainstream integration for decision making
- Determine how to address uncertainty

Conclusions

Program	Potential uses for toxicogenomics in risk assessment							
	Weight of evidence	Mode of Action analysis	Prioritization	Chemical Grouping to support Read across				
Existing substances	~	~	~	v				
New substances and nanomaterials	~	~	~	~				
Water	~	~	 ✓ 	~				
Air	 ✓ 	 ✓ 	~	 ✓ 				
Controlled substances	~	~	~	v				
Radiation	~	~						
Consumer products, cosmetics and workplace chemicals	~	v	v	V				
Food	~	~	~	 ✓ 				
Biologics and genetic therapies	~	~						
Marketed health products	~	~						
Therapeutic products	~	~						
Pesticides	~	~	~	v				

Toxicogenomic applications in risk assessment at Health Canada. *Current Opinions in Toxicology*. Volume 18, December 2019, Pg 34-45.

These case studies build confidence in the application of tPODs in regulatory evaluations and help to define suitable contexts of use

- Much to learn from focused collaborative studies on individual chemicals or small chemical groupings
- Demonstrating applicability across broad chemical and biological space will be critical to mainstream integration for decision making
- Growing interest in use across regulatory bureaus

HESI eSTAR POD Working Group

Funding Provided by:

- Genomics Research & Development Initiative
- Chemicals Management Plan
- NSERC CREATE-REACT
- Canada Research Chairs Program

