Assessing effects of mixtures of Per- and Polyfluoroalkyl Substances (PFAS) using transcriptomic points of departure

Gregory Addicks DSRG presentation - March 7th 2023

Overview

- Introduction
 - PFAS chemicals and why mixtures are a concern
- Main Question
 - Do PFAS have synergistic or antagonistic effects or are their effects additive?
- Methodology
 - Chemicals and mixtures Cells and treatments Sequencing and QC
 - Data processing and BMC generation with BMD Express
 - Using data to predict mixture potency
- Results
 - Comparison of predicted mixture potency to empirical mixture potency

The Miracle of PFAS

PFAS are Per and Polyfluoroakyl Substances

- Hydrophobic
- Lipophobic
- Heat and Fireproof
- Non-stick
- Very low surface tension
 - Helps stuff flow and/or stick
- Breathable waterproof fabrics
- Non-stick cookware
- Waxed paper
- Waterproof makeup
- Stain guard
- Fire fighting foam
- Industrial processes

The Problem with PFAS

PFAS are Per and Polyfluoroakyl Substances

- Hydrophobic
- Lipophobic
- Heat and Fireproof
- Non-stick
- Very low surface tension
 - Helps stuff flow and/or stick
- Do not break down in environment
- Mobile in the environment
- Accumulate in biological organisms
- Resemble metabolic substrates
- Interact with cellular metabolism regulators
- Associated with numerous health problems

The PFAS Problem

PROTEIN SCIENCE

Unveiling the binding mode of perfluorooctanoic acid to human serum albumin

Lorenzo Maso,

07 February 2021 | https://doi.org/10.1002/pro.4036 |

PFAS PFOA (8C)

Fatty Acid Capyrlic Acid (8C) н нн нн н о 1 / / / Он 1 нн нн нн н

Resemble metabolic substrates

Η

- Interact with cellular metabolism regulators
- Associated with numerous health problems

• Associated with numerous health problems

European Environment Agency

Project Overview - Assess PFAS mixtures

- Assess potency of PFAS mixtures
 - PFAS are in the environment
 – exposure to multiple PFAS is supported by biological screening surveys worldwide
 - Do PFAS mixtures have additive, synergistic or antagonistic effects?
- Human Liver Spheroids exposed to PFAS and PFAS mixtures
- Transcriptomic analysis of overall change to gene expression
- In-vitro
 - Exposures are most relevant to concentrations at plasma / cellular level
 - Data is not directly usable for regulatory purposes
 - Exposures need in-vitro to in-vivo extrapolation

PFAS used in this study

Class	Name (Acronym)	Structure	Class	Name (Acronym)	Structure
Perfluoroalkyl carboxylates (PFCAs)	Perfluorobutanoate (PFBA) Perfluoropentanoate (PFPeA) Perfluorohexanoate (PFHxA) Perfluoroheptanoate	$F_{3}C$ F_{2} $F_{$	Perfluoroalkyl sulfonates (PFSAs)	Perfluorobutane sulfonate (PFBS) Perfluorohexane sulfonate (PFHxS) Perfluorooctane sulfonate (PFOS)	$F_{3}C$ F_{2} $F_{3}C$ F_{2} $F_$
	(PFHpA) Perfluorooctanoate		Sulfonamide	Perfluorooctane sulfonamide (PFOSA)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(PFOA) Perfluorononanoate (PFNA) Perfluorodecanoate (PFDA)	$F_{3}C$ F_{2} $F_{$	Sulfonate telomers	8:2 Fluorotelomer sulfonate (8:2 FtS)6:2 Fluorotelomer sulfonate (6:2 FtS)	$F_{3}C$ F_{2} F_{2} F_{2} F_{2} F_{2} F_{2} $F_{3}C$ F_{2} F_{2} F_{2} F_{2} $F_{3}C$ F_{2} F_{2} F_{2} F_{2} $F_{3}C$ F_{2} F_{2} F_{2} $F_{3}C$ F_{2} F_{2} $F_{3}C$ F_{2} F_{2} $F_{3}C$ F_{3
	Perfluoroundecanoate (PFUnA)	$F_{3}C$ F_{2} $F_{$	0.1µM 0.3	2 ♥ 3uM 1uM 3uM	3 4 5 6 ↓ ↓ ↓ ↓ 10µM 30µM 100µM

PFAS Mixtures

- 14 PFAS used in study
- 7 mixtures of varying complexity and composition

Mix1 -Mix2 -Mix3 -Mix4 -Mix5 -Mix6 -Mix7 -PFBA -C4 PFPeA -C5 C6 PFHxA -PFHpA -C7 PFOA -C8 C9 PFNA -C10 PFDA -C11 PFUnA -C4 PFBS -C6 PFHxS -C8 PFOS -C8 PFOSA -C8 FtS 6-2 -C10 FtS 8-2 -**¦** 2 5 6 1 3 Mixture

PFAS

Mixture components

PFAS Mixtures

- 14 PFAS used in study
- 7 mixtures of varying complexity and composition
- Mixture concentration range similar to PFAS
 - Exposure concentration for mixtures =
 - Combined concentration of all PFAS
 - $2\mu M$ Mixture = $1\mu M$ POFA + $1\mu M$ PFOS

Mixture components Mix1 -Mix2 -Mix3 -Mix4 -Mix5 -Mix6 -Mix7 -PFBA -C4 PFPeA -C5 PFHxA -C6 PFHpA -C7 PFOA -**C8** PFNA -C9 C10 PFDA -C11 PFUnA -C4 PFBS -C6 PFHxS -**C8** PFOS · **C8** PFOSA -C8 FtS 6-2 -

C10

'7

5

Mixture

6

PFAS

FtS 8-2 -

1

2

Mixture components

PFAS Mixtures

Non Mixtures		Individual PFAS	Concentrations (uM)
Single		PFBA, PFPeA, PFHxA, PFHpA, PFOA*, PFNA, PFDA, PFUnA,	0.2. 2. 10. 20. 50. 100
PFAS		PFBS*, PFOS*, PFHxS,	* also 0.02, 0.1, 1
		PFOSA. 6:2 FtS. 8:2 FtS	
		† PFUnA	+ 0.13, 1.3, 6.5, 13, 34, 66
Mixture Name	Subgroup	Individual PFAS	Concentrations (µM)
(# PFAS in Mix)			
1 (2)	PFCAs (1)	PFOA	0.4, 2, 4, 20, 40, 100
	PFSAs (1)	PFOS	
2 (9)	PFCAs (6)	PFBA + PFPeA + PFHxA + PFHpA + PFOA + PFNA	0.18, 1.8, 9, 18, 45, 100
	PFSAs (3)	PFBS + PFHxS + PFOS	
3 (11)	PFCAs (6)	PFBA + PFPeA + PFHxA + PFHpA + PFOA + PFNA	0.22, 2.2, 11, 22, 55, 100
	PFSAs (3)	PFBS + PFHxS + PFOS	
	Other (2)	6:2 FtS + 8:2 FtS	
4 (11)	PFCAs (8)	PFBA + PFPeA + PFHxA + PFHpA + PFOA + PFNA + PFDA + PFUnA	0.22, 2.2, 11, 22, 55, 100
	PFSAs (3)	PFBS + PFHxS + PFOS	
5 (12)	PFCAs (8)	PFBA + PFPeA + PFHxA + PFHpA + PFOA + PFNA + PFDA + PFUnA	0.24, 2.4, 12, 24, 60, 100
	PFSAs (3)	PFBS + PFHxS + PFOS	
	Other (1)	PFOSA	
6 (3)	PFCAs (2)	PFOA + PFNA	0.9, 9, 18, 30, 60, 100
	PFSAs (1)	PFOS	
7 (2)	Other (2)	6:2 FtS + 8:2 FtS	0.4, 2, 4, 20, 40

PFAS Mixtures

- 14 PFAS used in study
- 7 mixtures of varying complexity and composition
- Mixture concentration range similar to PFAS
 - Exposure concentration for mixtures =
 - Combined concentration of all PFAS
 - $2\mu M$ Mixture = $1\mu M$ POFA + $1\mu M$ PFOS
 - Mixtures are all equimolar
 - External exposures are variable
 - Each component has opportunity to affect total mixture potency

Mixture components

PFAS exposed Human Liver Spheroids

- Contains cells from 10 donors
 - Donors from both sexes
 - Kupffer cells and hepatocytes
- ~2000 cells per spheroid

3D InSight[™] Human Liver Microtissues

3D InSight[™] Human Liver Microtissues

PFAS exposed Human Liver Spheroids

- Contains cells from 10 donors
 - Donors from both sexes
 - Kupffer cells and hepatocytes
- ~2000 cells per spheroid
- One spheroid per exposure
 - One spheroid per well

3D InSight[™] Human Liver Microtissues

PFAS exposed Human Liver Spheroids

- Contains cells from 10 donors
 - Donors from both sexes
 - Kupffer cells and hepatocytes
- ~2000 cells per spheroid
- One spheroid per exposure
 - One spheroid per well
- 6 Exposure concentrations
- 4 Replicate exposures (1 x per plate)
- 2 Exposure times (24 hours and *10 days)
 - *Media refreshed every 48 hours

3D InSight[™] Human Liver Microtissues

PFAS exposed Human Liver Spheroids

- Contains cells from 10 donors
 - Donors from both sexes
 - Kupffer cells and hepatocytes
- ~2000 cells per spheroid
- One spheroid per exposure
 - One spheroid per well
- 6 Exposure concentrations
- 4 Replicate exposures (1 x per plate)
- 2 Exposure times (24 hours and *10 days)
 - *Media refreshed every 48 hours
- Several controls
 - DMSO
 - Downstream processing
 - Sequencing

• QC

Transcriptomics

- TempO-Seq
 - Higher throughput
 - (less in house labor)
 - More economical
 - (lower cost for sequences)
- S1500+
 - 2753 genes
 - Captures all pathways
- Quality Control (QC)
 - spheroid loss
 - contamination
 - unexplained excessive variability

Gene expression measurement

- Transcriptomics
 - Measure cellular compensation response
 - Direct activation of transcription factors
 - Global and specific effects
- TempO-Seq
 - Oligo based gene expression
 - Assesses expression of specific genes
 - Higher number of genes than microarray
 - Sequencing screens out background
 - Higher throughput than RNA seq
- S1500+
 - 2753 genes
 - Representative of diverse biological space
 - More economical that whole transcriptome TempO-Seq

PFAS Cytotoxicity

Sequencing data for cytotoxic samples removed from downstream data processing to improve statistical power for data quality control

²⁴ hours PFAS exposure cytotoxicity

Quality Control (QC)

- Sequencing data was screened for several measures to ensure data quality
- **Clustering distance** •
- Number of mapped reads •
- Fraction of mapped reads •
- Number of active probes •
- Number of probes with 80% ٠ of signal
- Gini coefficient ۲

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 4 -3 -.... 2 -.... **PFBA PFPeA** PFHxA **PFHpA** PFOA **PFNA PFDA** 4 -3 -2 -1 -PFUnA PFBS **PFHxS** PFOS **PFOSA** FtS 6:2 FtS 8:2 10 100 0,7

10 day PFAS exposures

7

0.7

10 100

0.7

10 100

0,7

10 100

100

10

100 10

0.7 7 0.7

7

0.7

7

100

10

PFAS concentration (μ M)

Data passing QC for each PFAS or Mixture at 24 hours or 10 days (Exposure Series) is used for BMC determination

10 day PFAS exposures

Data passing QC for each PFAS or Mixture at 24 hours or 10 days (Exposure Series) is used for BMC determination

10 day PFAS exposures

Data passing QC for each PFAS or Mixture at 24 hours or 10 days (Exposure Series) is used for BMC determination

10 day PFAS exposures

• Data for each concentration used for bootstrapping

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 ٠ 4 -.... 3 -.... 2 -٠ • 0.01 ٠ 1-• **PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA** 4 -.... 3 -.... 2 -.... 1 -PFUnA **PFBS PFHxS** PFOS **PFOSA** FtS 6:2 FtS 8:2 4 -3. 2 -1 -.... Ö., - The 10 100 0.7 10 100 10 100 10 100 10 100 10 100 10 100 t -1.5 1.7 1.7 1.7 0.7 7 0.7 0.7 0.7 0.7 7 7 7 7 7 7

10 day PFAS exposures

PFAS concentration (μ M)

- Data for each concentration used for bootstrapping
- Data for each gene, each exposure level and PFAS or mixture used to create a normal distribution

Mix1 Mix2 Mix4 Mix5 Mix3 Mix6 Mix7 3 -2 -**PFBA PFPeA PFHxA PFHpA PFOA PFNA** PFDA 4 -. 3 -2 -0.4 5 8:2 $\mathbf{\omega}$ 4 -3 -2 -1 -0 \sim 10 100 4.1% 4.1% 0 0.1 /lix7 2.1% 2.1% 4 -3 -... 0.1% 0.1% 13.6 13.6% 0.0 2 -1 -•• $\mu - 2 \sigma_{HxA} \mu - \sigma$ $\mu_{\text{FP}} \mathcal{F}_{\text{FP}} \mathcal{F}_{\text{A}} \sigma$ $\mu + q_{FOA} \mu + 2\sigma \mu + 3\sigma$ PFHDA PFBA PFDA 4 3 -2 -1 -PFOS **PFUnA** PFBS **PFHxS** PFOSA FtS 6:2 FtS 8:2 3. 1 -10 100 100 0.7 7 70 0.7 0,7 100 Ö., 10 0,7 7 . 10 100 0,7 . 10 ion Ö, 10 100 10 100 7 7 7 7

PFAS concentration (μ M)

- Data for each concentration used for bootstrapping
- Data for each gene, each exposure level and PFAS or mixture used to create a normal distribution
- Normal distributions are randomly sampled for each gene, exposure level and PFAS or mixture

Mix1 Mix4 Mix5 Mix2 Mix3 Mix6 Mix7 3 -2 -**PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA** • • 0.4 S 8:2 $\mathbf{\omega}$ 0 0.2 10 100 34. % 34. % 0.1 /lix7 2.1% 2.1% 4 -0.1% 0.1% 13 ;% 13.6% 3 **-**0.0 2 -1 -... $\mu - 2 \sigma_{HxA} \mu - \sigma$ μ_{FPEA} $\mu + q_{FOA} \mu + 2\sigma$ _µµ_{NÅ}3σ PFHDA PFBA PFDA 3 -2. **PFUnA** PFBS PFHxS PFOS PFOSA FtS 6:2 FtS 8:2 100 100 10 100 10 0.7 Ö., Ö., Ö., Ö., 100 0,7 100 10 100 7 10 10 7 7 7 10 10 100

PFAS concentration (μ M)

- Data for each concentration used for bootstrapping
- Data for normal distributions are randomly sampled for each gene
- Normal distributions are randomly sampled for each gene, exposure level and PFAS or mixture
- End result is:
- 100 x exposure series simulations (for each gene for each PFAS or mixture and exposure time)

BMC Determination using BMDExpress – Gene Expression

- Gene expression data for each PFAS / Mixture exposure series
 - Filtered for 1.5 fold change in expression
 - Williams trend test p = 0.01
 - Plotted for dose response curve fitting
 - BMC is one standard deviation from the mean of the DMSO control

- All BMCs for each exposure series are placed in a bootstrap distribution
 - BMCs are sampled the appropriate number of times (depending on total number of ⁴/₂ BMCs)
 - BMC list is ranked by BMC concentrations
 - Repeated 10,000x resulting in list of potential BMCs for each rank
 - Lowest BMC
 - 2nd lowest BMC...
 - 25th lowest BMC
- For each BMC rank: median 2.5% and 97.5% values used for BMCs and 95% CIs

BMC accumulation plots

- BMCs ranked from lowest concentration
 - 10s to 100s of BMCs for each PFAS
 - Total # of BMCs influenced by experimental parameters
 - Exposure concentrations
 - Cytotoxicity
- 25th BMC
 - Concerted molecular response
 - Concentration where gene expression changes broadly
 - Compensation to changes caused by toxicant exposure
 - Direct activation of transcription factors

25th BMC – does not require accurate highest BMC #

PFAS Potency

- Longer chain PFAS generally more potent
- Different potency depending on type of PFAS
- Mixtures seem to have potency corresponding to their constituents

PFAS Potency

- Longer chain PFAS generally more potent
- Different potency depending on type of PFAS
- Mixtures seem to have potency corresponding to their constituents

Mix1-Mix2-Mix3-Mix4-Mix5-Mix6-Mix7-**PFBA** PFPeA[·] **PFHxA** S Ę **PFHpA** PFOA **PFNA** PFDA-**PFUnA** PFBS **PFHxS** PFOS-PFOSA-FtS 6-2-FtS 8-2-Mixture

Are mixture potencies comparable to expectation based on single PFAS potencies?

Analysis of Mixtures – Potency and BMC

- Chemicals having different relative potencies have stronger effects at the same dose
- BMCs are the doses of substances that result in the same specified effect
- BMC is reciprocal of Potency

*example only – Dr. Addicks is not a physician or veterinarian

Concentration addition (aka dose addition)

Predicted mixture BMC calculations - based on dose addition

Fraction_i = Fraction of each component in mixture BMC_i = BMC of each component in mixture

$$BMC_{mix} = \left(\Sigma\frac{0.5}{2} + \frac{0.5}{4}\right)^{-1} = \left(\Sigma\frac{1}{4} + \frac{1}{8}\right)^{-1} = \frac{3}{8}^{-1} = \frac{8}{3} = 2.67$$

BMC (mixture) of POFA and PFOS =

Predicted BMC (mixture) =

ure) =
$$\left(\frac{0.5}{16.14} + \frac{0.5}{1.92}\right)^{-1}$$
 = (0.0295 + 0.260)⁻¹ = (0.290)⁻¹ =

BMC (mixture) of POFA and PFOS = 3.45

Predicted BMC (mixture) = $\left(\frac{0.5}{16.14} + \frac{0.5}{1.92}\right)^{-1}$

 $+ \frac{0.5}{1.92} \Big)^{-1} = (0.0295 + 0.260)^{-1} = (0.290)^{-1} = 3.45 \,\mu\text{M}$

24 hour 25th gene BCMs (+/- BMCL/BMCU)

- **Concentration Addition** predicted BMCs
- Empirical O
- Predicted $-\Delta$
- No clear deviation from additivity
- Most have overlapping CIs
- Most have less than ± 2 fold differences in BMC
- All have less than ± 2 fold differences in CI endpoints

C4

C5

C6

C7

C8

C9

C10

C11

C4

C6

C8

C8

C8

C10

6

10 day 25th gene BCMs (+/- BMCL/BMCU)

- Concentration Addition predicted BMCs
- Empirical O
- Predicted Δ
- No clear deviation from additivity
- Most have overlapping Cls
- Most have less than ± 2 fold differences in BMC
- All have less than ± 2 fold differences in CI endpoints

Mixture components

CA predicted PFAS mixture BMCs

Dose addition calculations done for each BMC independently (RPF calculated for each BMC)

CA predicted PFAS mixture BMCs

CA predicted PFAS mixture BMCs

Conclusions

- PFAS mixtures have additive effects in mixtures
 - No evidence of synergistic or antagonistic effects using conservative criteria
 - Debate continues on what qualifies as synergistic or antagonistic
- Findings apply to PFAS concentrations at cellular environment
 - Relative potencies of PFAS differ from some in-vivo data
 - Bioaccumulation or excretion?
 - In-vitro to in-vivo extrapolation data needed to apply this data to human or animal external exposures through food, water, contact etc.
 - Can not exclude PFAS interactions affecting accumulation, persistence or excretion at whole organism level

Acknowledgements

- Ella Atlas and Carole Yauk
 - designed the project
- Andrea Rowan-Carroll and Karen Leingartner
 - cell culture, planning, sequencing etc.
- Matthew Meier and Andrew Williams
 - data processing, computation
- Barbara Wetmore and others at US EPA
 - PFAS chemicals
- Many others in the background supporting the project