

Department of Environmental and Global Health **UNIVERSITY of FLORIDA**

UF

Integrating machine learning and quantitative structure activity relationship modeling approaches to build an artificial intelligence-assisted physiologically based pharmacokinetic model for nanoparticles in tumorbearing mice

----- Society for Risk Analysis

---- Dose Response Specialty Group in September 2023

Wei-Chun Chou

Center for Environmental and Human Toxicology (CEHT) Department of Environmental and Global Health, College of Public Health and Health Professions University of Florida, Gainesville, FL 32610

Challenge in tumor delivery of nanomedicine

 NPs are becoming an increasingly popular tool for biomedical imaging and drug delivery.

Image source: https://www.thescientist.com/cover-story/nanomedicine-37087

- The poor tumor delivery efficiency of nanomedicines has been a major barrier in the translation of nanomedicine to potent drug candidates.
- Lack of understanding of pharmacokinetic of nanomedicine might be a major reason.

Abbreviations: Nanoparticles (NPs)

Biodistribution of Nanoparticles (NPs)

- The pharmacokinetics of nanomedicine is very different with the traditional drugs.
- One of important mechanisms to affect the NPs' biodistribution is phagocytosis.
- Different physicochemical properties of NPs, such as size, materials, biochemistry, and shape, may relate to the NPs' phagocytosis and biodistribution.

Kim et al., 2015; Hamad-Schifferli et al., 2015

Two AI methods were applied to predict tumor delivery efficiency

1. A data-driven method

Lin Z, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. Int J Nanomedicine. 2022 Mar 24;17:1365-1379. doi: 10.2147/IJN.S344208.

2. A hybrid method

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J Control Release. 2023 Sep;361:53-63. doi: 10.1016/j.jconrel.2023.07.040.

A data-driven model (with QSAR approach)

Quantitative structure-activity relationship (QSAR)

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. *International Journal of Nanomedicine*, 17: 1365-1379.

Variables in the Nano-Tumor Database

1. Categorical variables

- Material: Inorganic/organic NPs \rightarrow 1/0
- Shape: Spherical/Rod/circle \rightarrow 1...3
- Cancer type: Brain/Breast/...
- Tumor model (TM)
- Targeting strategy (TS): Active/Passive \rightarrow 1/0

2. Numerical variables

- Hydrodynamic diameter [nm]
- Zeta potential [mV]

3. Target variables

- Tumor Delivery efficiency (%ID)

Overview of the Nano-Tumor Database (1/3): Categorical variables

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. *International Journal of Nanomedicine*, 17: 1365-1379.

Overview of the Nano-Tumor Database (2/3): Numerical variables

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. *International Journal of Nanomedicine*, 17: 1365-1379.

Estimation of tumor delivery efficiency (DE)

- The linear trapezoidal method is limited to the dataset and can not estimate the DE at different time points such as 24 (DE24), 168 (DE168) and last time point (DETlast)
- In this study, we used calibrated PBPK model to estimate the AUC and then estimate the Demax, DE24, DE168 and DETlast

Machine Learning and Artificial Intelligence models

UF

Table 1. Summary of modeling algorithms used in this study.

Model	Synonym	Model category Tuning parameters		
Machine Learning Algorithms				
Linear regression	Linear	Simple model	Alpha, Lambda	
k-nearest neighbors	Knn	Simple model	К	
Random Forest	RF	Ensemble model	mtry	
Bagged Model	Bag	Ensemble model	None ^a	
Stochastic Gradient Boosting	Gbm	Ensemble model	n.trees; shrinkage,	
			n.minobsinnode	
Support vector machine	SVM	Support vector machine	С	
Least-squares SVM	LS-SVM	Support vector machine	Cost, loss	
L2-Regularized SVM	L2-SVM	Support vector machine	Cost, loss	
Deep Learning Algorithm				
Deep neural networks	DNN	Neural networks	Rate, L1, L2	

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.

Evaluation metrics for machine learning models

The performance of each model for the 5-fold cross-validation and external validation was evaluated by root mean square error (RMSE), mean absolute error (MAE) and adjusted determination coefficient (R²).

$$RMSE = \sqrt{\frac{1}{n} \cdot (\sum (y - \hat{y})^2)}$$
(1)
$$MAE = \frac{1}{n} \cdot (\sum |y - \hat{y}|)$$
(2)
$$R^2 = 1 - (\sum (y - \hat{y})^2 / \sum (y - \bar{y})^2$$
(3)

Comparison of predictions between linear regression, machine learning and deep learning models

Data-driven delivery efficiency (%ID)

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. *International Journal of Nanomedicine*, 17: 1365-1379.

5-fold cross validation results using machine learning and deep learning

	DEmax		DE24		DE188		DETlast	
Model	5-fold CV	Test						
LR								
R ²	0.06 ± 0.05	0.08	0.10 ± 0.10	0.08	0.07 ± 0.03	0.06	0.07 ± 0.07	0.13
RMSE	3.98 ± 1.03	7.56	3.89 ± 0.61	6.56	2.18 ± 0.60	3.20	3.98 ± 0.88	4.73
MAE	2.42 ± 0.48	3.31	2.37 ± 0.24	2.70	1.29 ± 0.20	1.44	2.42 ± 0.44	2.46
KNN								
R ²	0.03 ± 0.04	0.06	0.04 ± 0.04	0.08	0.03 ± 0.04	0.04	0.01 ± 0.04	0.08
RMSE	4.05 ± 1.12	7.55	3.95 ± 0.71	6.51	2.31 ± 0.56	3.22	4.05 ± 1.01	4.77
MAE	2.36 ± 0.47	3.51	2.31 ± 0.30	2.82	1.33 ± 0.21	1.50	2.36 ± 0.43	2.59
RF								
R ²	0.19 ± 0.12	0.16	0.19 ± 0.16	0.17	0.19 ± 0.10	0.11	0.15 ± 0.16	0.29
RMSE	3.71 ± 1.03	7.15	3.64 ± 0.62	6.18	2.06 ± 0.61	3.17	3.72 ± 0.82	4.24
MAE	2.21 ± 0.48	2.92	2.17 ± 0.27	2.37	1.20 ± 0.21	1.30	2.22 ± 0.45	2.15
Bag	0.00 + 0.07	0.00	0 40 1 0 40	0.00	0.40 + 0.00	0.04	0.00 . 0.00	0.45
	0.09 ± 0.07	7.40	0.13 ± 0.12	0.08	0.10 ± 0.00	0.04	0.09 ± 0.09	0.15
RIVISE	3.91 ± 1.00	7.49	3.80 ± 0.04	0.00	2.10 ± 0.08	3.ZZ	3.91±0.91	4.03
Ohm	2.38 ± 0.47	3.34	2.34 ± 0.20	2.00	1.27 ± 0.19	1.30	2.38 ± 0.40	Z.44
D2	0.09 ± 0.09	0.00	0.12 ± 0.11	0 17	0.11 ± 0.06	0.05	0.09 ± 0.07	0.24
DMSE	0.00 ± 0.00 2.01 ± 1.02	7/10	0.12 ± 0.11 2.91 ± 0.62	6.20	0.11 ± 0.00 2.16 ± 0.57	2.00	0.00 ± 0.07 2.02 ± 0.95	1.46
MAE	3.31 ± 1.03 2.42 ± 0.47	2.27	3.01 ± 0.02 2.34 ± 0.26	2.60	2.10 ± 0.07 1.30 ± 0.20	1 32	3.32 ± 0.03 2.42 ± 0.42	2.28
R-SVM	2.72 ± 0.77	0.21	2.04 ± 0.20	2.00	1.00 ± 0.20	1.02	2.72 ± 0.72	2.00
R2	0.02 + 0.03	0.23	0.04 + 0.03	0 19	0.04 ± 0.03	0 14	0.02 + 0.02	0.25
RMSE	4 12 + 1 29	7.80	4 02 + 0 87	6 76	2 28 + 0 67	3.31	4 12 + 1 12	4.97
MAF	1 93 + 0 54	2.82	1 87 + 0 35	2 32	1 06 + 0 24	1 22	1.93 ± 0.47	2.08
LS-SVM		2.02		2.02	1.00 2 0.21			2.00
R ²	0.02 ± 0.03	0.23	0.05 ± 0.03	0.18	0.05 ± 0.03	0.13	0.03 ± 0.03	0.24
RMSE	4.12 ± 1.29	7.81	4.02 ± 0.87	6.77	2.27 ± 0.66	3.31	4.12 ± 1.12	4.98
MAE	1.92 ± 0.54	2.83	1.86 ± 0.26	2.32	1.05 ± 0.24	1.22	1.93 ± 0.47	2.09
L2-SVM								
R ²	0.07 ± 0.06	0.14	0.11 ± 0.10	0.14	0.08 ± 0.04	0.18	0.08 ± 0.07	0.19
RMSE	4.01 ± 0.97	7.32	3.91 ± 0.59	6.37	2.23 ± 0.56	3.03	4.02 ± 0.78	4.54
MAE	2.52 ± 0.46	3.20	2.45 ± 0.26	2.61	1.38 ± 0.19	1.37	2.52 ± 0.42	2.39
DNN								
R ²	0.47 ± 0.20	0.70	0.40 ± 0.34	0.46	0.45 ± 0.24	0.33	0.35 ± 0.23	0.63
RMSE	3.58 ± 1.35	2.38	2.75 ± 0.92	3.10	1.96 ± 1.09	1.78	3.24 ± 1.04	3.01
MAE	2.20 ± 0.65	1.64	1.72 ± 0.50	1.84	1.10 ± 0.42	0.94	1.92 ± 0.54	1.81

Table Footnote

LR: Linear regression, KNN: k-nearest neighbors; RF: Random forest; Bag: Bagged Model; Gbm: Stochastic Gradient Boosting; R-SVM: Regular support vector machine; LS-SVM: least-squared support vector machine; DNN: Deep learning neural network. DE_{max} , DE_{24} , DE_{168} and DE_{Tlast} represent the maximum tumor delivery efficiency (DE), DE at 24 h, 168 h, and the last sampling time, respectively. CV: cross-validation.

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. *International Journal of Nanomedicine*, 17: 1365-1379.

Importance percentage in the deep learning model for each target variable

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. *International Journal of Nanomedicine*, 17: 1365-1379.

Summary for data-driven method

- Deep learning model had the best predictive performance compared to all other methods.
- Zeta potential and NPs materials were the most important factors which contribute to the tumor delivery efficiency.
- The present study also demonstrates the feasibility of integrating ML/AI with PBPK models to support cancer nanomedicine research and development.

A hybrid method (Al-assisted PBPK model)

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J Control Release. 2023 Sep;361:53-63

Theoretical parameter: Endocytosis of NPs

Monteiro-Riviere et al. 2013. Toxicology Letters

• Hill function to simulate endocytosis of gold nanoparticles

PCs represent phagocytic cells in organs or tumors;

A_(Ti) represents amount of NPs in the tissue interstitium of the organ;

Kre,i is the release rate constant of NMs by PCs

Physiological based pharmacokinetic (PBPK) model

• Simplified equation in PBPK model $\frac{dA_{T_i}}{dt} = -K_{up_i} \times A_{T_i} + K_{re,i} \times A_{PC_i}$

Lin et al., 2016. Nanotoxicology

PBPK model for tumor-bearing mice

Model fitting with animal studies

Physiological based pharmacokinetic (PBPK) model for tumor-bearing mice

PCs represent phagocytic cells in organs or tumors;

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J Control Release. 2023 Sep;361:53-63

Similarity between predicted and data-driven parameters

19

Density

Evaluation results of AI-PBPK model-predicted tumor delivery efficiency

Abbreviation: DE, delivery efficiency; DE24, delivery efficiency at 24 hours; DE168, delivery efficiency at 168 hours; Demax, maximum of DE; %2e, percentage of 2-fold error range %3e, percentage of 3-fold error range

Evaluation results of AI-PBPK model-predicted time-dependent distribution of nanoparticles (NPs) to tumors

Representative evaluation results of AI-PBPK model

 This study demonstrated the feasibility of an integration of machine learning/AI technologies with a mechanistic PBPK model to predict the tumor delivery efficiency of NPs.

 Our AI-assisted PBPK model not only provides an early screening tool for estimating tumor delivery efficiency of NPs, but also can reduce the number of animals use at the early-stage preclinical trials to identify NPs with desired delivery efficiency to tumor.

Acknowledgements

Lab members:

Former members:

Zhoumeng Lin Wei-Chun Chou Qiran Chen Malek Hussein Hajjawi Xue Wu Pei-Yu Wu Chi-Yu Chen Zhicheng Zhang Venkata Nithin Kamineni Yashas Kuchimanchi Miao Li Yi-Hsien Cheng Md Mahbubul Huq Riad Long Yuan Dongping Zeng Trevor Elwell-Cuddy Paula Solar; Sichao Mao Yilei Zheng; Yi-Jun Lin Ning Xu; Yu Shin Wang Jake Willson Gabriel (Guanyu) Tao

Collaborators:

ICCM/NICKS/KSU EGH/CEHT/UF FARAD Team

Advisors:

Dr. Jim E. Riviere Dr. Nancy A. Monteiro-Riviere Dr. Nikolay M. Filipov Dr. Jeffrey W. Fisher Dr. Ronette Gehring

Funding:

- NIH/NIBIB Grant #: R01EB031022
- NIH/NIBIB Grant #: R03EB026045
- NIH/NIBIB Grant #: R03EB025566
- UF PHHP PhD Fellowship in Artificial Intelligence

KSU Lab 2019

UF Lab 2021

UF FARAD 2021

National FARAD 2022

National FARAD 2022

UF Lab 2023