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Image was obtained from Wilhelm et al., 2016

Challenge in tumor delivery of nanomedicine
• The poor tumor delivery efficiency of nanomedicines has 

been a major barrier in the translation of nanomedicine to 
potent drug candidates.

• Lack of understanding of pharmacokinetic of nanomedicine 
might be a major reason.

• NPs are becoming an 
increasingly popular tool for 
biomedical imaging and 
drug delivery.

Image source: https://www.the-
scientist.com/cover-story/nanomedicine-37087

Abbreviations: Nanoparticles (NPs)
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• The pharmacokinetics of nanomedicine is very different with the traditional drugs. 
• One of important mechanisms to affect the NPs’ biodistribution is phagocytosis.
• Different physicochemical properties of NPs, such as size, materials, biochemistry, and shape, 

may relate to the NPs’ phagocytosis and biodistribution.
Kim et al., 2015; Hamad-Schifferli et al., 2015

Biodistribution of Nanoparticles (NPs)

Reticuloendothelial System (RES)
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Two AI methods were applied to predict tumor delivery efficiency  

Lin Z, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere
JE. Predicting Nanoparticle Delivery to Tumors Using Machine
Learning and Artificial Intelligence Approaches. Int J
Nanomedicine. 2022 Mar 24;17:1365-1379. doi:
10.2147/IJN.S344208.

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA,
Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based
pharmacokinetic model to predict nanoparticle delivery to tumors in
mice. J Control Release. 2023 Sep;361:53-63. doi:
10.1016/j.jconrel.2023.07.040.

1. A data-driven method 2. A hybrid method



A data-driven model (with QSAR approach)

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and 
Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.

Quantitative structure-activity relationship (QSAR)
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Variables in the Nano-Tumor Database

1. Categorical variables
- Material: Inorganic/organic NPs 1/0
- Shape: Spherical/Rod/circle  1…3
- Cancer type: Brain/Breast/…
- Tumor model (TM)
- Targeting strategy (TS): Active/Passive 1/0

2. Numerical variables
- Hydrodynamic diameter [nm]
- Zeta potential [mV]

3. Target variables
- Tumor Delivery efficiency (%ID)

Image by Tumisu from Pixabay



NPs type NPs shape Materials

Overview of the Nano-Tumor Database (1/3): Categorical variables 

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning 
and Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.
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Overview of the Nano-Tumor Database (2/3): Numerical variables
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Zeta potential (ZP) of the NPsHydrodynamic diameter (HD) of NPs 

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and 
Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.

2.51 nm to 457 nm −59.4 mV to 71.30 mV.
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Estimation of tumor delivery efficiency (DE)

Wilhelm et al. (2016) 

• The linear trapezoidal method is limited to the dataset and can not estimate the DE at different 
time points such as 24 (DE24), 168 (DE168) and last time point (DETlast) 

• In this study, we used calibrated PBPK model to estimate the AUC and then estimate the Demax, 
DE24, DE168 and DETlast

168 hr24 hr

Modeling-prediction DE 

DETlast

DE168

DE24

DEmax

Overview of the Nano-Tumor Database (3/3): Target variables



Machine Learning and Artificial Intelligence models
Table 1. Summary of modeling algorithms used in this study.

Model Synonym Model category Tuning parameters

Machine Learning Algorithms

Linear regression Linear Simple model Alpha, Lambda

k-nearest neighbors Knn Simple model K

Random Forest RF Ensemble model mtry

Bagged Model Bag Ensemble model Nonea

Stochastic Gradient Boosting Gbm Ensemble model n.trees; shrinkage, 

n.minobsinnode

Support vector machine SVM Support vector machine C

Least-squares SVM LS-SVM Support vector machine Cost, loss

L2-Regularized SVM L2-SVM Support vector machine Cost, loss

Deep Learning Algorithm

Deep neural networks DNN Neural networks Rate, L1, L2
Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. 
International Journal of Nanomedicine, 17: 1365-1379.



11

Evaluation metrics for machine learning models 

The performance of each model for the 5-fold cross-validation and external 
validation was evaluated by root mean square error (RMSE), mean absolute 
error (MAE) and adjusted determination coefficient (R2). 

 

(1) 

 
(2) 

 
(3) 
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R2_train = 0.76
RMSE_train = 2.02 
R2_test = 0.63
RMSE_test = 1.81

R2_train = 0.34
RMSE_train = 3.09 
R2_test = 0.08
RMSE_test = 5.15

R2_train = 0.72
RMSE_train = 2.46 
R2_test = 0.08
RMSE_test = 5.14
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Linear regression

Comparison of predictions between linear regression, machine 
learning and deep learning models

Random forest Deep learning

Data-driven delivery efficiency (%ID)

DETlast

Core 
materialsData

Dendrimers
Gold
Hydrogels
Iron Oxide
Liposomes
Other IM
Other OM
Polymeric
Silica

Training set
Test set

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and 
Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.



5-fold cross validation results using machine learning and deep learning

Table Footnote
LR: Linear regression, KNN: k-nearest neighbors; 
RF: Random forest; Bag: Bagged Model; Gbm: 
Stochastic Gradient Boosting; R-SVM: Regular 
support vector machine; LS-SVM: least-squared 
support vector machine; L2-SVM: L2-regulated 
support vector machine; DNN: Deep learning neural 
network. DEmax, DE24, DE168 and DETlast represent 
the maximum tumor delivery efficiency (DE), DE at 
24 h, 168 h, and the last sampling time, 
respectively. CV: cross-validation.

13Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning 
and Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.
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Importance percentage in the deep learning model for each target
variable

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning 
and Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.

DEmax

DE168

DE24

DETlast

DE24: Delivery efficiency at 24 hours
DE168: Delivery efficiency at 168 hours
Demax: Maximal delivery efficiency
Delast: Delivery efficiency at last time point

14
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• Deep learning model had the best predictive performance compared 
to all other methods.

• Zeta potential and NPs materials were the most important factors 
which contribute to the tumor delivery efficiency.

• The present study also demonstrates the feasibility of integrating 
ML/AI with PBPK models to support cancer nanomedicine research 
and development. 

Summary for data-driven method

Lin Z*, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning 
and Artificial Intelligence Approaches. International Journal of Nanomedicine, 17: 1365-1379.
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A hybrid method (AI-assisted PBPK model)

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J 
Control Release. 2023 Sep;361:53-63
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Theoretical parameter: Endocytosis of NPs

Monteiro-Riviere et al. 2013. Toxicology Letters

Kmax,i: maximum uptake rate

K50,i: time reaching half maximum rate

ni: Hill coefficient 

• Hill function to simulate endocytosis of gold nanoparticles 

PCs represent phagocytic cells in organs or tumors; 
A_(Ti ) represents amount of NPs in the tissue interstitium of the organ;
Kre,i is the release rate constant of NMs by PCs 
Physiological based pharmacokinetic (PBPK) model

𝑑𝑑𝐴𝐴𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝐾𝐾𝑢𝑢𝑝𝑝𝑖𝑖 × 𝐴𝐴𝑇𝑇𝑖𝑖 + 𝐾𝐾𝑟𝑟𝑟𝑟,𝑖𝑖 × 𝐴𝐴𝑃𝑃𝐶𝐶𝑖𝑖

• Simplified equation in PBPK model

𝐾𝐾𝑢𝑢𝑝𝑝,𝑖𝑖 𝑑𝑑 =
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 × 𝑑𝑑𝑛𝑛𝑖𝑖

𝑑𝑑50,𝑖𝑖
𝑛𝑛𝑖𝑖 + 𝑑𝑑𝑛𝑛𝑖𝑖

Chithrani et al. 2006. Nano Letters

Lin et al., 2016. Nanotoxicology 



Physiological based pharmacokinetic (PBPK) 
model for tumor-bearing mice

PBPK model for tumor-bearing mice
Model fitting with animal studies
Nano Tumor Database: (376 datasets 
from 200 studies)

Obtain optimized model 
parameters

Finalized PBPK model
PCs represent phagocytic cells in organs or tumors; 

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to 
predict nanoparticle delivery to tumors in mice. J Control Release. 2023 Sep;361:53-63
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Similarity between predicted and data-driven parameters

Data-driven values: 9.5 (95% CI: 0.01-118)
Predicted values: 13.4 (95% CI: 0.83-80.3)
Adj-R2 = 0.70 

Data-driven values: 0.31(95% CI: 0.01-11.6)
Predicted values: 0.47 (95% CI: 0.24-13)
Adj-R2 = 0.87  

Data-driven values: 2 (95% CI: 0.05-8)
Predicted values: 1.8 (95% CI: 0.37-7.42)
Adj-R2 = 0. 85 

Data-driven values: 0.1 (95% CI: 0.001-7.76)
Predicted values: 0.18 (95% CI: 0.001-6.16)
Adj-R2 = 0.81 

Predicted parameters

Data-driven parameters

KTRES_50: Time reaching half maximum rate in tumor KTRES_max: Maximum uptake 
rate of NPs in tumor

KTRES_n: Hill coefficient KTRES_n: : Release rate of NPs in tumors 



Adj-R2: 0.83
%2e: 69.7
%3e: 91.6

Adj-R2: 0.56
%2e: 11.4
%3e: 19.4

Adj-R2: 0.82
%2e: 74.6
%3e: 91.6

Data-driven DE24 Data-driven DE168 Data-driven DEmax
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Evaluation results of AI-PBPK model-predicted tumor 
delivery efficiency

Abbreviation: DE, delivery efficiency; DE24, delivery efficiency at 24 hours; 
DE168, delivery efficiency at 168 hours; Demax, maximum of DE;
%2e, percentage of 2-fold error range
%3e, percentage of 3-fold error range 20



Observed NPs in tumor(%ID/g)
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N: 1354
Adj-R2: 0.67
RMSE: 14.7

%2e: 67
%3e: 85

Evaluation results of AI-PBPK model-predicted time-dependent 
distribution of nanoparticles (NPs) to tumors
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Representative evaluation results of AI-PBPK model
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Summary for hybrid method

• This study demonstrated the feasibility of an integration of machine 
learning/AI technologies with a mechanistic PBPK model to predict 
the tumor delivery efficiency of NPs. 

• Our AI-assisted PBPK model not only provides an early screening 
tool for estimating tumor delivery efficiency of NPs, but also can 
reduce the number of animals use at the early-stage preclinical 
trials to identify NPs with desired delivery efficiency to tumor.
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