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Research Program in Computational Toxicology and Pharmacology
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Machine Learning (ML) and Artificial Intelligence (Al)

« Artificial intelligence (Al) is a rapidly developing subdiscipline of
computer science with the goal of designing and creating machines
or computational models that can perform a variety of cognitive
tasks at a level comparable or even exceed human intelligence.

* In this presentation, it mainly refers to the applications of various
machine learning methods in the prediction and evaluation of
chemical toxicokinetic (i.e., absorption, distribution, metabolism, and
excretion [ADME]) and toxicity properties.

« Machine learning (ML) is a subarea of artificial intelligence, and it
refers to mathematical or computer algorithms designed to teach or
train a computational model to solve a problem or perform complex
tasks based on some input parameters.

Image source: https://towardsdatascience.com/cousins-of-artificial-intelligence-ddadedc27b55

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data




What is PBPK Modeling?
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What is QSAR Modeling?

Chemical QSAR Chemical
Structure

Activity

“Endpoint”

« Quantitative structure activity relationship analysis (QSAR): the study of the relationship between
chemical structure and biological properties of substances.

« QSAR has long been used by researchers to predict pharmacokinetics and toxicity properties of
chemicals and to develop new products or therapeutic agents with desirable properties.

6
OECD, 2017. https://www.oecd-ilibrary.org/environment/fundamental-and-quiding-principles-for-q-sar-analysis-of-chemical-carcinogens-with-mechanistic-considerations 9789264274792-en
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Applying ML and Al in Different Subject Areas of Toxicology

* Physiologically based pharmacokinetic (PBPK) modeling

« Quantitative structure-activity relationship (QSAR) modeling
« Adverse outcome pathway (AOP) analysis

« High-content image-based screening

* Toxicogenomics
CONTEMPORARY REVIEW

Machine Learning and Artificial Intelligence in

Toxicological Sciences
Zhoumeng Lin "' and Wei-Chun Chou @*"

‘Department of Environmental and Global Health, College of Public Health and Health Professions, University
of Florida, Gainesville, Florida 32610, USA; and 'Center for Environmental and Human Toxicology, University
of Flonda, Gainesville, Flonnda 32608, USA
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Commonly Used Machine Learning Methods in Toxicology

Table 1. A List of Machine Learning Methods Commonly Used in Toxicological Research

Method

Brief Description

Supervised linear methods
Multiple linear regression

MNaive Bayes classifier
Supervised nonlinear methods
k-nearest neighbors

Support vector machine

Decision trees

Ensemble learning
Random forest

Artificial neural networks
Backpropagation neural networks

Bayesian-regularized neural networks
Assodative neural networks
Deep neural networks

Unsupervised methods

Prindple component analysis

Kohonen's self-organizing maps

Use multiple explanatory variables to predict the outcome of a response variable with a multivar-
ate linear equation

Based on Bayes’ theorem with strong assumptions of conditional independence among molecular
descriptors (ie, explanatory variables)

Classify a test chemical by looking for the training chemicals with the nearest distance to it

Map molecular descriptor vectors into a higher dimensional feature space to build a maximal mar-
gin hyperplane to distinguish active (toxic) from inactive (nontoxic) chemicals

Each modelis a series of rules organized in the format of a tree containing a single root node and
any number of internal nodes and several leaf nodes. The path from the root to a leaf stands for
a sequence of classification rules predicting a toxicity endpoint for a given chemical

Combine several base models into a more predictive one. Popular types of ensemble modelingin-
clude bagging, random spaces, boosting, and stacking.

Combine the bagging with the random spaces approaches in application to decision trees base
maodels

All neurons are divided into 3 layers, with information flowing from the first layer of input neu-
rons to the second layer of hidden neurons, and then to the third layer of output neurons

Apply Bayesian methods to perform regularization so that the model complexity is balanced
against the accuracy of reprodudng training data

Apply ensemble learning to backpropagation neural networks

Artifidal neural networks with multiple hidden layers (also called deep learning)

Reduce the dimensionality of the data to only the first few principal components while preserving
as much of the data’s variation as possible

Map molecules from the original descriptor space onto a 2D gnid of neurons. Similar molecules
will be mapped to the same closely located neurons in the grid

This table is based on the book chapter by Baskin (2018). Flease refer to Baskin (2018) for detailed description about each of the listed machine learning algorithms.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19.




List of Studies using ML in QSAR Modeling to Predict Toxicity

Table 2. Representative Studies Integrating Machine Learning Approaches With Quantitative Structure-Activity Relationship Modeling

Best Machine leaming Method Training Dataset Endpoint Reference
Deep leaming (ie, DeepTox) 11 764 chemicals from Tox21 12 bioassays Mayr et al. (2016)
Ensemble extreme gradient 1003 chemicals Carcinogenicity Zhang et al. {2017)

boosting
Random forest

Ensemble support vector
machine

Multitask neural networks and
graph convolutional networks

Extra trees

Ensemble model
Support vector machine

Deep leaming (ie, CapsCarcino)

Kemel-weighted local polyno-
mial approach

Meta ensembling of multitask
deep learning models (ie,
QuantitativeTox)

Deep leaming-based model-level
representations (ie, DeepCarc)

Extra trees

Support vector machine
A consensus model based on 4
algorithms

Deep leaming

Random forest

Over 866 000 chemical proper-
ties’hazards

400 chemicals
1012 PFAS

Owver 1000 chemicals from differ-
ent databases

7385 chemicals

482 chemicals

1003 chemicals from CFDB

Hundreds of chemicals depend-
ing on the species

Hundreds to thousands of com-
pounds depending on the
endpoint

692 chemicals

Over 18 600 drug-bacteria
interactions
676 pesticides

1244 chemicals
31 chemicals with kmown or sus-

pected clinical skin toxicity
1476 food contact chemicals

Acute oral and dermal toxicity,
eye and skin irritation, muta-
genicity, and skin sensitization

Aguatic acute toxicity

Binactivity on 26 bioassays

Varous toxicities

Acute toxicity in rats

Acute toxicity in fathead
MINNoWw

Carcinogenicity

Acute aquatic toxicity

_LD5c| and LC5Q

Carcinogenicity

Gut bacterial growth

Acute contact toxicity on honey
bees

Prenatal developmental toxicity

Skin toxicity

Carcinogenicity

Luechtefeld et al. (2018)

Al etal (2019)
Chengand Ng (2019)
Puet al. (2019)

Russoetal (2019)
Chen et al. (2020)

Wang et al (2020)
Gajewicz-Skretna et al (2021)

Karim et al. (2021)

Lietal (2021)
McCoubrey et al. (2021)
Xuetal (2021)
Ciallella et al. (2022)
Hu et al. (2022)

Wang et al (2023)

CPDB, Carcinogenic Potency Database. LC.q, and LDs, refer to the compound concentrations that kill half the members of the tested animal population, respectvely.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. Toxicological Sciences, 189(1):7-19.
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Studies That Used ML/AI to Predict ADME for Pharmaceutical Compounds B

Table 2. A List of Representative Studies That Used Machine Learning and Artificial Intelligence Approaches in the Predictions of Absorption,

Distribution, Metabolism, and Excretion Properties for Pharmaceutical Compounds

Society of
SOT ‘ Toxicology
OXEORD academic.oup.com/toxsci

Wei-Chun Chou ([3"?, Zhoumeng Lin (5"

References N  Predict Target Descriptor Types Modeling Method Performance”
Absorption
Agatonovic-Kustrin 86 HIA 0D-3D theoretical descriptors ANN, RBF, GNN Training set: R” = 0.82; RMSE = 0.59
etal. (2001) Test set: RMSE=10.90
Deconinck et al. 67 HIA 1D-3D theoretical descriptors plus ~ MARS Whole data set: RMSE =7.2%;
(2007) one of Abraham’s solvation Whole data set: R* =0.93
parameters
Niwa (2003) 86 HIA 0D-1D theoretical descriptors GRNN, PNN Training set: RMSE=6.5
Test set: RMSE=22.8
Talevi et al. (2011) 120 HIA 0D-3D Dragon theoretical MLR, ANN, SVM Training set: R*= 0.8; RMSE =0.18
descriptors Test set: R?= 0.66; RMSE=0.21
Yan et al. (2008) 52 HIA Adriana Code and Cerius2 0D-2D GA, PLS, SVM Training set: R*= 0.66; RMSE =12.5
theoretical descriptors Test set: R?= 0.77; RMSE=16
Shen et al. (2010) 1593 HIA 1D-2D theoretical descriptors SVM Training set: Q =98.5%
Test set: Q =99%
Kamiya et al. 184 Papp Chemical descriptors (not specific SVM, PLS, RBF Whole data set: R =0.84-0.85
(2021b) descriptions)
Ghafourian et al. 310 HIA Atotal of 215 descriptors (not spe-  MLR Training set: RMSE = 14.54
(2012) cific descriptions) Test set: RMSE = 23.84
Hou et al. (2007) 648 HIA 0D-2D theoretical descriptors MARS, GA Training set: R*=0.97.3
Test set: R>= 0.98
Wang et al. (2017) 970 HIA 2D-3D descriptors, molecular fin- RF Training set: SE= 0.89; SP =0.85;
gerprints, and structural Q=0.89
fragments Test set: SE=0.88; SP=0.81; Q=0.87
Distribution
Antontsev et al. 21 Kp Not explained in the study BIOiISIM Test set: AFE =0.96 (Cimax), 0.89
(2021) (AUC), 0.69 (Vd); AAFE=1.2
(Cmax), 1.30 (AUC), 1.71 (Vd);
R?=0.99 (Cpnay), 0.98 (AUC), 0.99
(vd)
Golmohammadi 310 Kp 3D descriptors and molecular struc- SVM; GA, PLS Training set: R? = 0.98, RMSE=0.117
etal (2012) tural information Test set: R = 0.98, RMSE= 0.118
Liu et al. (2005) 208 Kp Constitutional, topological, geomet- SVM Training set: R? = 0.97, RMSE = 0.02
rical, electrostatic and quantum Test set: R = 0.974, RMSE = 0.0289
chemical descriptors
Yun et al. (2014) 122 Kp LogP, pKa, fu DT;RF Whole data set: Q =72%

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.

Toxicological Sciences, 2023, 191(1), 1-14

hitps://doi.org/10.1093/toxsci/kfac101
Advance Access Publication Date: 26 September 2022
Contemporary Review

Machine learning and artificial intelligence in
physiologically based pharmacokinetic modeling
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Studies That Used ML/AI to Predict ADME for Pharmaceutical Compounds

Table 2.. (continued)

References N Predict Target Descriptor Types Modeling Method Performance”
Metabolic
Athersuch et al. 15 Classify the metabolic pathways of  PCA, PLS Whole data set: R = 0.96, Q=77.5%
(2013) test compounds
Baranwal et al. 6669 Classify the metabolic pathways of RFand GCN Test set: Q =98.99%
(2020) test compounds
Jia et al. (2020) 5682 Classify the metabolic pathways of RF Whole data set: Q =94%
test compounds
Zhang et al. (2008) 44 Vinaso Km Molecular fingerprints ANN Whole data set: R? = 0.6-0.9 (K,,), R®
=0.6-0.7 (Vinax), RMSE = 0.3-0.5
(K;»), RMSE = 0.4-0.7 (Vipa)
Sarigiannis et al. 54 Vmase Km Physicochemical properties based ANN, NLR Test set: R>= 0.82 (K,,), R* = 0.99
(2017) on Abraham's solvation equation (Vinasx)
Elimination
Hsiaoet al. (2013) 244 Cline Molecular fingerprints, physico- PLS, RF, PCA Whole data set: R> = 0.96; Q =48%
chemical properties, and 3D
quantum chemical descriptors
Iwata et al. (2021) 748 Cliotal The chemical structure was repre- DL Test data set: GMFE = 2.68
sented as graph data
Kosugi and Hosea 1114 Cliotal 2D SMARTS-based descriptors RF, RBF Whole data set: R = 0.55, RMSE=
(2020) 0332
Paine et al. (2010) 349 Clyenal 195 descriptors RF Training set: R? = 0.93, RMSE = 0.32
Test set: R = 0.63, RMSE=0.63
Paixaoetal. (2010) 112 Cline 233 molecular descriptors ANN Training set: R? = 0.953,
RMSE=0.236
Test set: R = 0.804, RMSE = 0.544
Wang et al. (2019) 1352 Cligtan 2D and 3D descriptors, and 49 SVM, GBM, XGBoost Training set: R = 0.882,
fingerprints. RMSE=0.239
Test set: R? = 0.875, RMSE = 0.103
Gombar and Hall 525 Clior 89 descriptors calculated from elec- SVM, MLR Test set: R = 0.70

(2013)

tro-topological state (E-state)
fingerprints

Abbreviations: AAFE, absolute average fold error; AFE, absolute fold error; ANN, artificial neural netwaorks; Clix, intrinsic metabolic clearance; Clrena, renal clearance;
Clis i, total plasma clearance; DL, deep learning; DT, decision tree; GA, generic algorithm; GBM, gradient boosting machine; GCN, graphical conventional network;
GMFE, geometric mean fold error; GNN, general neural network; GRNN, general regression neural network; F, oral bioavailability; HIA, human intestinal absorption; K,
Michaelis constant; MARS, multivariate adaptive regression splines; MLR, multiple linear regression; NLR, nonlinear regression; Papp, apparent membrane permeabil-
ity coefficients; PCA, principle component analysis; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy; R squared Pearson's correla-
tion coefficient; RBF, radial basis function; RF, random forest; RMSE, root-mean-square error; SVM, support vector machine; Viay, maximal reaction rate; XGBoost,

eXtreme CGradient Boosting.

*The performance from the best model.
Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.
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Studies That Used ML/AI to Predict ADME for Nonpharmaceutical Compounds

Table 3. A List of Representative Studies That Used Machine Leamning and Artificial Intelligence Approaches in the Predictions of Toxicokinetic
Parameters for Nonpharmaceutical Compounds|

References N Predict Target Descriptor Types Modeling Method Performance”
Wambaugh et al. (2015) 271 Transporter affinity NA RF NA
Ingle et al. (2016) 1651 Fub 2D molecular descriptors kNN, SVM, RF Training set: R* = 0.82;
RMSE=0.59
Test set: R* = 0.51; RMSE =0.218
Watanabe et al. (2018) 2738 Fub 2D molecular descriptors kNN, SVM, RF,PLS  Test set: R? = 0.728; RMSE =0.145
Papa et al. (2018) 1000  Clyy, 2-3D molecular descriptors  PLS Whole data set: R? = 0.80, RMSE=
0.62
Pradeep et al. (2020) 1487  Fub, Cl; 0-3D molecular descriptors  SVM, RF, ANN Fub:
Training set: R? = 0.56,
RMSE = 0.82;
Test set: R? = 0.57, RMSE =0.80
Clie:
Training set: R = —0.00,
RMSE = 0.46;
Test set: R? = 0.16, RMSE = 0.40
Dawson et al. (2021) 6484  Fub, Clin 1-3D molecular descriptors ~ RF Fub:
Training set: R? = 0.584,
RMSE = 0.206;

Test set: R? = 0.591, RMSE =0.187
(Environment chemicals from
ToxCast)

Clint:

Test set: Q=0.55 (Class 1), 0.12
(Class 2), 0.90 (Class 3)

Yun et al. (2021) 818 Fub 2D molecular descriptors kNN, SVM, RF,PLS  Test set: R? = 0.52, Mean absolute
error=12.6

Abbreviations: ANN, artificial neural networks; Clin,, intrinsic metabolic clearance; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy;
R?, squared Pearson’s correlation coefficient; RF, random forest; RMSE, root mean square error; SVM, support vector machine.

*The performance from the best model. 12
Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences, 191(1):1-14.
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A List of Databases That Contains PK Data for Machine Learning Analysis

Table 1. A list of databases that contain pharmacokinetic data for machine learning analyses

Database name Number of PK parameters Description Website References

compounds

PK-DB 676 Cl, t1/2, AUC, Crax, PK-DBis a comprehensive database, https://pk-db. Grzegorzewski

Kel and PK time- which contains data from human com et al (2021)
courses data clinical trials and provides curated
PK Information on charactenstics
of studied patient cohorts, applied
interventions, PK parameters, and
PK time-courses data.
PK/DB 1203 HIA T, fu, BBB, Vd, PE/DB1s a robust database for PK www.pkdb. Moda et al
Cl, t12 studies and in silico ADME predic- ifsc.usp .br (2008)
tion.

PKKB 1685 HIA, fu, Vd, Cl, LD50 Pharmacokinetic Knowledge Base http://cadd. Cao etal.
(PKKB) 1s a comprehensive data- suda.edu. (2012)
base of PK and toxic properties for cri/admet
drugs.

e-Drug3D 1852 vd, Cl, t14, PPB, F, e-Drug3D1is a database of 1852 FDA- https://che- Pihan et al.

Crax, and Tmax approved drugs with 3-D chemical moinfo. (2012)
structures and information on PK ipmc.cnrs.
parameters IT/MOLDB/
index.php

ChEMBL >1M Not available Open-access database containing www.ebl.ac. Gaulton et al.
ADME and toxic information for uk/chembl/ (2012)
numerous drug-like compounds

Lombardo's database 1352 Vd, Cl, MRT, fu, tys» A human intravenous PK data set Not available Lombardo
derived from the literature. etal (2018)

Wang's database 970 HIA A human intestinal absorption data Not available Wangetal.
set consists of 970 compounds, (2017)
and 9 different types of descrip-
tors.

CvT 144 PK time-course data A public database of chemical ime- https://github. Sayre etal
series concentration data for 144 com/ (2020)
environmentally relevant chemi- USEPA/
cals and their metabolites CompTox-

PK-CvTdb

Abbreviations: AUC, area under curve;
BBB, blood brain barrier; Cl,
clearance; Cmax, maximum
concentration; F, oral bioavailability; fu,
fraction unbound in plasma;

HIA, human intestinal absorption; Kel,
elimination rate; LD, lethal dose; MRT,
mean residence time; PK,
pharmacokinetic; PPB, plasma protein
binding; t1/2, terminal half-life; Tmax,
time to peak drug concentration; Vd,
volume of distribution.
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A List of Databases Relevant to Computational Toxicology

UNIVERSITY of
LORID,

A

Table 3. A List of Databases Relevant to Computational Toxicology

Database Data Size® Data Type Reference
ACToR Over 800 000 compounds and 500 In vitro and in vivo toxicity Judson et al. (2008)
000 assays
Biosolids list 726 chemical pollutants Concentration data in biosolids Richman etal (2022)
CEBS Over 11 000 compounds and 8000 Gene expression data Lea et al. (2017)
studies
ChEMBL 1.1 million bicassays, 1.8 million Literature data on binding, func- Gaulton et al. (2012)
compounds, over 15 million tion, and toxicity of drugs and
activities drug-like chemicals
Connectivity map Around 1300 compounds and Gene expression data Subramanian et al. (2017)
7000 genes
CTD Over 14 000 compounds, 42 000 Relationships among com- Davis et al. (2021)
genes, 6000 diseases pounds, genes, and diseases
DrugMatrix Around 600 drug molecules and Gene expression data Ganter et al. (2005)
10 000 genes
GEO Over 4300 subdata sets Microarray, next-generation se- Barrett et al. (2013)
quendng, and other forms of
high-throughput functional
genomics data
eNanoMapper Over 700 types of nanomaterials Diverse data types on nanomate- Jeliazkova et al. (2015)
rial physicochemical proper-
ties and safety
MoleculeNet Over 700 000 compounds Quantum mechanics, physical Wu et al. (2018)

Open TG-GATEs

PubChem

Pubvinas

REACH

RepDose

SEURAT

ToxicoDB
ToxNET

170 compounds

Over 111 million compounds,
1.39 million bicassays, and 293
million bicactivity data points

11 types of nanomaterials with
705 unique nanomaterials

21,405 unique substances with
information from 89,905
dossiers

364 compounds investigated in
1017 studies, resultingin 6,002
specific effects

Over 5500 cosmetic-type com-
pounds in the current COSMOS
database web portal

231 chemicals

Over 50 000 environmental
chemicals from 16 resources

chemistry, biophysics, and
physioclogy

Gene expression data and
metadata

Toxicology, genomics, pharma-
cology, and literature data

Up to 6 physicochemical proper-
ties and/or bioactivities

Data submitted in European
Union chemical legislation

Repeat-dose study data in dogs,
mice, and rats

Animal toxicity data

Toxicogenomic data
In vitro and in vivo toxicity data

Igarashiet al. (2015)

Kim etal. (2021)

Yan etal. (2020)

Luechtefeld et al. (2016)

Bitschet al. (2006)

Vinken et al. (2012)

Nair et al. (2020)
Fongeret al. (2000)

2 On the basis of live web counts or most recent
literature publications as of March 2022. ACToR,
Aggregated Computational Toxicology
Resource; CTD, Comparative

Toxicogenomics Database; CEBS, Chemical
Effects in Biological Systems; GEO, Gene
Expression Omnibus; Open TG-GATEs, a large-
scale toxicogenomic database; REACH,
Registration, Evaluation, Authorization, and
Restriction of Chemicals; SEURAT, Safety
Evaluation Ultimately Replacing Animal Testing;
ToxNET, Toxicology Data Network. This table
was adapted from Ciallella and Zhu (2019) with
permission from the publisher.
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Case Study 1:
Al in Predicting ADME

Properties
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Background, Objective, and Rationale of Case Study 1

Background Objective and Rationale

» To develop models to predict the withdrawal time of drugs
following extralabel use in food animals in order to protect safety of
animal-derived food products, such as meat, milk, and eggs.

Food Animal Residue Avoidance Databank

(A component of the Food Animal Residue Avoidance & Depletion F'ro-gram}

587 AU G

USDA National Residue Sample Results “Red Book”: https://www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/chemistry/Residue-Chemistry
USDA Economic Research Service Statistics & Information: https://www.ers.usda.gov/topics/animal-products/cattle-beef/statistics-information.aspx



Overview and Timeline of Our PK/PBPK Models (KSU + UF)

2014-2016

« Established methodology

» Created PBPK models for
drugs in an average animal

» Ceftiofur, enrofloxacin,
flunixin, sulfamethazine

« Swine and Cattle
Lin et al. 2015. J Pharm Sci

Lin et al. 2016. Sci Rep
Lin et al. 2016. J Vet Pharmacol Ther

2016-2018

Improved the methodology
Monte Carlo simulation

Created PBPK models for
drugs in a diverse population
of animals

Penicillin G
Swine, beef cattle, dairy cows

Lin et al. 2017. Toxicol Sci
Li et al. 2017. Food Chem Toxicol
Li et al. 2018. Toxicol Sci

2018-2022
* Graphical user interface (GUI)
* Population PBPK models
* Penicillin G, flunixin, florfenicol, and oxytetracycline
* Physiological parameter database: cattle, swine, chickens,
turkeys, sheep, goats
* Other quantitative methods from FDA & EMA
Li et al. 2019. Arch Toxicol Lin et al. 2020. J Vet Pharmacol Ther
Li et al. 2019. J Vet Pharmacol Ther Smith et al. 2020. Front Vet Sci
Bates et al. 2020. BMC Vet Res Li et al. 2021. J Vet Pharmacol Ther
Wang et al. 2021. J Vet Pharmacol Ther Riad et al. 2021. Toxicol Sci
Lin et al. 2019. J Anim Sci Chou et al. 2022. Toxicol Sci
Yuan et al. 2022. Food Chem Toxicol
Yuan et al. 2022. RTP

U.S. FOOD & DRUG

ADMINISTRATION

EUROPEAN MEDICINES AGENCY

SCIENCE MEDICINES HEALTH

http://www.thecis.co.uk/theClS/images/ciscows_slider.jpg 17
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Role of Al and PBPK in Animal-Derived Food Safety Assessment

FoeAl T

Food Animal Residue Avoidance Databank

Extract Pharmacokinetic (PK) Data
* Plasma and tissue half-lives
Clearance

Other pharmacokinetic parameters
* Dosing regimens

Drugs/active Data Processing
ingredients
with reported Input layer: All data except half-lives
half-lives Output layer: Half-lives

Extract Cheminformatics data
*  Molecular descriptors
* Fingerprints

Long-term: Integration of Al with PBPK and/or QSAR/QSPR to predict PK properties of drugs
Short-term: Build an AI-QSAR model to predict plasma half-life of animal drugs

Machine Learning and Artificial Intelligence Methods

Artificial Neural Network

1 Hidden layer 2

7

XY
\/

R
ozl

4\\‘,

N\

VA

Deep Neural

N
P R ;

s ORI R
X W@l

Network

Hidden layer N-1 Hidden fayer N
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A

QSAR: Quantitative structure-activity relationships
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Schematic Workflow of Al-based QSAR Modeling
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Wu PY, et al., unpublished results from the Lin Lab at UF.



Preliminary Results
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Wu PY, et al., unpublished results from the Lin Lab at UF.



Case Study 2:
Al in Predicting Toxicity
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« Carcinogenicity testing plays an important

role in identifying carcinogens in drug

development and environmental chemical

risk assessment.

Traditionally, the carcinogenic potency is
evaluated with a 2-year carcinogenicity

study in rodents, but this process is very
time-consuming and resource-intensive.

Chemical carcinogenicity assessment is

required to be conducted in at least 2
species.
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DeepCarc: Deep Learning-Powered
Carcinogenicity Prediction Using
Model-Level Representation

Ting Li™?, Weida Tong’, Ruth Roberts**, Zhichao Liu’* and Shraddha Thakkar®*

'Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration,
Jefferson, AR, Uniled Stales, “University of Arkansas al Little Rock and University of Arkansas for Medical Sciences Joint
Bioinformatics Program, Little Rock, AR, United States, *ApconiX [ td., Alderey Feige, United Kingdom, “Department of
Biosciences, University of Birmingham, Birmingham, United Kingdom, *Office of Translational Sciences, Center for Drug
Evaluation and Research, US Food and Drug Administration, Siver Spring, MD, United States

Carcinogenicity testing plays an essential role in identifying carcinogens in environmental
chemistry and drug development. However, it is a time-consuming and label-intensive
process to evaluate the carcinogenic potency with conventional 2-years rodent animal
studies. Thus, there is an urgent need for alternative approaches to providing reliable and
robust assessments on carcinogenicity. In this study, we proposed a DeepCarc model to
predict carcinogenicity for small molecules using deep learning-based model-level
representations. The DeepCarc Model was developed using a data set of 692
compounds and evaluated on a test set containing 171 compounds in the National
Center for Toxicological Research liver cancer database (NCTRIcdb). As a result, the
proposed DeepCarc model yielded a Matthews correlation coefficient (MCC) of 0.432 for
the test set, outperforming four advanced deep learning (DL) powered quantitative
structure-activity relationship (QSAR) models with an average improvement rate of
37%. Furthermore, the DeepCarc model was also employed to screen the
carcinogenicity potential of the compounds from both DrugBank and Tox21.
Altogether, the proposed DeepCarc model could serve as an early detection tool
(https://github.com/TingLi2016/DeepCarc) for carcinogenicity assessment.

ity, deep ing, QSAR, imal NCTRicdb
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Li T, Tong W, Roberts R, Liu Z, Thakkar S. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation. Front Artif Intell. 2021 Nov 18;4:757780.
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Case Study 2: Machine Learning Models to Predict Chemical Carcinogenicity

« DeepCarc model to predict carcinogenicity for small
molecules using deep learning-based model-level
representations. The DeepCarc model was developed with a
dataset of 692 chemicals and evaluated with a test set
consisting of 171 chemicals.

 The data were obtained from the National Center for
Toxicological Research liver cancer database and involved
both rats and mice.

« The authors also compared performance of the DeepCarc
model with other deep learning models that were based on
molecule-level representations, including Text Convolutional
neural network from DeepChem, Convolutional Neural
Network Fingerprint, Edge Attention-based Multi-relational
Graph Convolutional Networks, and Chemistry Chainer-
Neural Fingerprint.

« This DeepCarc model provides an early screening
nonanimal-based tool to assess potential carcinogenicity of
new chemicals and is useful for prioritizing chemicals on their
potential carcinogenic risk.

[ 863 Compounds (P/N = 561/302) ]
I Kennard-Stone
Development set Test set 171
‘ Training set 454 compounds (P/N = 360/194) 138 compounds compounds
(P/N = 30/48) (P/N = 111/50)
l Mold2, MACCS, Mol2vec
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FIGURE 1 | Overall workflow for the DeepCarc model including: (1) Data preparation. 863 compounds were splitinto training (554 compounds), development (138
compounds), and test (171 compounds) sets based on the Kennard-stone algorithm. () Base classifiers development. Five algorithms were used to develop the base
classifiers from three different chemical representations, including Mol2vec, Mold2, and MACCS. Two base classifiers selection strategies were employed to sclect the
oplimized dassifiers for meta classifier developrment. (3) Mela classifier development. With three chemical representations and two seleclion methods, six groups of
base classifiers, including Mol?vec_supenised, Mol?vec_original, Mald? _superised, were used Mald?_original, MACCS_supervised, and MACCS_onginal. The
probability prediction from selected base classifiers was used fo train the neural network. (4) Model evaluation. The DespCarc model was evaluated on the independent
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Case Study 2: Machine Learning Models to Predict Chemical Carcinogenicity

TABLE 2 | The model performance of DeepCarc and four advanced DNN models on the test set.

Models MCC Accuracy AUC F1 BA Sensitivity Specificity

DeepCarc 0.432 0.754 0.776 0.828 0.688 0.910 0.467

DC-TEXTCNN 0.392 0.735 0.719 0.829 0.627 0.982 0.271

CH-NFP 0.353 0.725 0.776 0.814 0.639 0.928 0.350

EAGCNG 0.328 0.713 0.682 0.800 0.641 0.883 0.400

CNF 0.185 0.673 0.636 0.796 0.541 0.982 0.100
24
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Case Study 3:
Al-assisted PBPK Model for

Nanoparticle Risk Assessment
Cancer Nanomedicine
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Delivery efficiency of NPs to tumors based on studies
published each year
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Critical barriers to progress in this field

* Nanotoxicology: lack of robust computational tools to assess risk

 Nanomedicine: low delivery efficiency (<1%) to target tissues (i.e., tumor)

* Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. 2016. Nature Reviews Materials, 1, 16014.

+ Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach.
ACS Nano. 2020;14(3):3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

* Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WIREs Nanomed Nanobiotechnol. 202%6

Nov:14(6):e1808.



Case Study 3: Al-assisted PBPK Model for Nanoparticles

PBPK Structure in tumor-bearing mice Nano-Tumor Database

\

-
Literature search
Database: PubMed
Lung tissue PCs Time range: 2015/1/1 - 2018/9/4
:! Keywords:
S i » Nanoparticle delivery;
£ .htemh:rre from CNR database Nanomaterial delivery
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S Language: English
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3 = 3
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> * Biodistribution data not reported in
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[ Included (n = 393) ] * Tumor-bearing animals other than
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:.§ l + Pharmacokinetic or biodistribution
£ N . L data from healthy rodents
o Manuscript review and application \ J
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tissue J, Excluded (n = 193)
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.y l; = CNR database (90) ;
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Interstitium Note: other cell types not shown here < » Subgroup analysis on tumor delivery efficiency

»> Regression analysis

Note: currently, this database contains 376 datasets from 200 studies published from 2005 to 2018.

27
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation
approach. ACS Nano, 14(3): 3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)



Case Study 3: Al-assisted PBPK Model for Nanoparticles

Representative Results in Tumor-Bearing Mouse Model
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Case Study 3: Al-assisted PBPK Model for Nanoparticles

Our Own “Nano-Tumor Database” for Subsequent Analyses

CNR or Mew Ref. ID New Ref. Mo Type MAT TS cT TM  Shape log{HD) zP DE(Tmax) DE(Tmax)_PK DE(24) DE(168) Max DE log(DE(Tmax)) log(DE(Tmax)_PK) log(DE(24)) log(DE(168)) log{Max DE) Conf.in Predict.
#1 Zhong et al. (2015) 1 Inorganic Gold Active Cervix  XH Rod 1.38 -18 2.06 137 1.69 2.06 2.36 0.21 0.29 0.23 0.31 0.37 Y (R2 =0.99)
#3 Goodrich et al. (2010} 2 Inorganic Gold Passive Colon AH Rod 1.48 4] 1.62 1.51 099 0.79 2.39 0.21 0.18 4] -0.1 0.38 ¥ (R2=0.99)
#4 Meyers et al. (2015) 3 Inorganic Gold Passive Brain XH Spherical 1.58 -5 2.99 3.61 6.64 2.99 7.44 0.48 0.56 0.82 0.48 0.87 ¥ (R2 =0.87)
#1 Meyers et al. (2015) 3 Inorganic Gold Active Brain XH Spherical 1.62 -5 2.83 2.85  3.27 2.33 4.18 0.45 0.45 0.51 0.45 0.62 ¥ (R2 =0.87)
#5 Dam et al. (2015} 4 Inorganic Gold Active Breast XH Other 1.84 -9.3 0.74 0.64 042 1.67 1.77 -0.13 -0.19 -0.38 0.22 0.25 Y (R2 =0.91)
#6 Sykes et al. (2014) 5 Inorganic Gold Active Skin X0 Spherical 1.69 -0.6 25.2 25.07 22.86 11 29.88 14 14 1.36 1.04 1.48 ¥ (R2=0.96)
#6 Sykes et al. (2014} 5 Inorganic Gold Active Skin X0 Spherical 1.78 -11 25.83 23.86 26.63 9.94  30.24 141 1.38 1.43 1 1.48 ¥ (R2=0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Active Skin X0 Spherical 2 -9 24.4 21.37 26.87 8.77 29.78 1.39 1.33 1.43 0.94 1.47 ¥ (R2 =0.96)
#6 Sykes et al. (2014} 5 Inorganic Gold Passive Skin X0 Spherical 1.67 -6.7 19.38 18.64 18.11 7.79 234 1.29 1.27 1.26 0.89 1.37 ¥ (R2=0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Passive Skin X0 Spherical 1.81 -15 14.63 14.28 14.71 547 17.52 1.17 1.15 1.17 0.74 1.24 ¥ (R2 =0.96)
#6 Sykes et al. (2014} 5 Inorganic Gold Passive Skin X0 Spherical 2.02 -10 12.17 11.19 11.98 4,53  14.77 1.09 1.05 1.08 0.66 1.17 ¥ (R2 =0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Active Skin X0 Spherical 2.24 -5 8.79 8.21  9.61 2.98 11.15 0.94 0.91 0.98 0.47 1.05 ¥ (R2 =0.96)
#6 Sykes et al. (2014) 5 Inorganic Gold Passive Skin XO  Spherical 2.22 -6 5.18 4.94  5.63 4.25 6.41 0.71 0.69 0.75 0.63 0.81 Y (R2 =0.96)
#7 Hu et al. (2014) 6 Inorganic Gold Passive Brain XH Spherical 0.79 1.13 112 113 0.37 1.34 0.05 0.05 0.05 -0.43 0.13 ¥ (R2 =0.98)
#3 Razzak et al. (2013) 7 Inorganic Gold Passive Prostate XH Spherical 1.44 0.13 0.060 0.11 0.03 0.14 -0.89 -1.22 -0.96 -1.52 -0.85 N (R2 =0.67)
#9 Liu et al. (2014} 8 Inorganic Gold Passive Cervix  XH Spherical 1.23 -9.8 1.24 1.13  1.02 0.76 1.55 0.09 0.05 0.01 -0.12 0.19 ¥ (R2 =0.94)
#9 Liu et al. (2014) & Inorganic Gold Passive Cervix  XH Spherical 1.49 -10.5 0.54 0.54 0.7 0.32 0.86 -0.19 -0.27 -0.15 -0.49 -0.07 Y (R2 =10.94)
#10 Cheng et al. (2014) 9 Inorganic Gold Active Brain XH Other 1.38 -21.3 1.63 1.57 1.58 0.65 1.87 0.21 0.2 0.2 -0.19 0.27 ¥ (R2=0.97)
#10 Cheng et al. (2014) 9 Inorganic Gold Passive Brain XH Other 1.41 21.7 0.61 0.59 0.57 0.26 0.69 -0.21 -0.23 -0.24 -0.39 -0.16 Y (R2 =0.97)
#10 Cheng et al. (2014) 9 Inorganic Gold Passive Brain XH Other 1.32 246 0.55 0.51  0.54 0.22 0.61 -0.26 -0.29 -0.27 -0.66 -0.21 Y (R2 =0.97)
#10 Cheng et al. (2014) 9 Inorganic Gold Passive Brain XH Other 1.26 254 0.38 0.36 0.4 0.15 0.43 -0.42 -0.44 -0.4 -0.82 -0.37 ¥ (R2=0.97)
#11 Zhang et al. (2015) 10 Inorganic Gold Active Stomach XH Spherical 0.79 -5 9.1 9.52 10.68 9.1 1246 0.96 0.98 1.03 0.96 1.1 Y(R2=0.82)
#12 Black et al. (2014} 11 Inorganic Gold Passive Breast AH  Spherical 1.4 4] 4.02 1.74 4.02 2.11 6.09 0.6 0.24 0.6 0.32 0.78 ¥ (R2 =0.99)
#12 Black et al. (2014) 11 Inorganic Gold Passive Breast AH Other 2.05 ] 1.65 0.62 1.65 0.55 2.14 0.22 -0.21 0.22 -0.26 0.33 Y (R2=0.99)
#12 Black et al. (2014} 11 Inorganic Gold Passive Breast AH Plate 212 0 1.23 0.46  1.23 0.37 1.46 0.09 -0.34 0.09 -0.43 0.16 ¥ (R2 =0.99)
#12 Black et al. (2014) 11 Inorganic Gold Passive Breast AH Rod 1.89 ] 0.47 0.15 0.47 0.17 0.61 -0.33 -0.82 -0.33 -0.77 -0.21 Y (R2 =10.99)
#13 Liu et al. (2013) 12 Inorganic Gold Passive Breast XO  Spherical 0.74 4] 1.26 1.24 154 0.41 1.74 0.1 0.09 0.19 -0.39 0.24 Y (R2 =0.70)
#14 Karmani et al. (2013) 13 Inorganic Gold Active Skin X0 Spherical 1.49 2.25 2.23 1.53 2.25 2.52 0.35 0.35 0.18 0.35 0.4 Y (R2=0.97)
#15 Wang et al. (2012) 14 Inorganic Gold Passive Breast AH Other 1.8 10.2 2.67 245 2.67 0.8 3.07 0.43 0.39 0.43 -0.1 0.49 Y (R2 =0.99)
#15 Wang et al. (2012} 14 Inorganic Gold Passive Breast AH Other 1.98 18.7 0.48 0.44 048 0.14 0.52 -0.32 -0.36 -0.32 -0.85 -0.28 Y (R2 =0.99)
#16 Shah et al. (2012) 15 Inorganic Gold Passive Prostate XH Spherical 1.82 -2.6 0.67 0.64 0.67 0.21 0.79 -0.17 -0.19 -0.17 -0.68 -0.1 Y (R2 =0.99)
#16 Shah et al. (2012) 15 Inorganic Gold Passive Prostate XH Spherical 1.8 -27.1 0.6 0.59 0.6 0.17 0.71 -0.22 -0.23 -0.22 -0.77 -0.15 Y (R2 =0.99)
#16 Shah et al. (2012} 15 Inorganic Gold Active Prostate XH Spherical 1.86 -2.9 0.61 0.55 0.61 0.21 0.85 -0.21 -0.26 -0.21 -0.68 -0.07 ¥ (R2=0.99)

Note: By 2020, this database contains 376 datasets from 200 studies published from 2005 to 2018. By 2023, this database contains 535 datasets from 298 studies published from 2005 to 2021.

+ Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation
approach. ACS Nano, 14(3): 3075-3095. (Best Paper Award of the Year 2020 — Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)
* Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z*. (2023). Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice.

ACS Nano, in press.
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Integration of Al with PBPK to Predict Tumor Delivery Efficiency

A data-driven approach

Physiologically Based Phgrmacokinetic G ‘ Machine Learning and Artificial Intelligence
(PBPK) Modeling
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based pharmacokinetic model to predict nanoparticle delivery to
tumors in mice. Journal of Controlled Release, 361:53-63..
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« By leveraging machine learning and artificial intelligence approaches, now it is possible to:

(1) Develop in silico models to predict ADME properties of hundreds of chemicals with acceptable accuracies;
(2) Develop PBPK models for hundreds of chemicals efficiently;

(3) Create in silico models to predict toxicity for a large number of chemicals with similar accuracies compared
with in vivo animal experiments;

(4) Analyze a large amount of different types of data (toxicogenomics, high-content image data, etc.) to generate
new insights into toxicity mechanisms rapidly, which was difficult by manual approaches in the past.

« Several challenges should be considered:

(1) Not all machine learning models are equally useful for a particular type of toxicology data, and thus it is
important to test different methods to determine the optimal approach;

(2) Current toxicity prediction is mainly on bioactivity classification (yes/no), so additional studies are needed to
predict the intensity of effect or dose-response relationship;

(3) As more data become available, it is crucial to perform rigorous data quality check and develop
infrastructure to store, share, analyze, evaluate, and manage big data;

(4) It is important to convert machine learning models to user-friendly interfaces to facilitate their applications
by both computational and bench scientists.
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alek Hussein Hajjawi 0 "ol Cuddy : y W. Fisl - UF PHHP PhD Fellowship in Artificial Intelligence

Pei-Yu Wu : Dr. Ronette Gehring
Chi-Yun Ch Paula Solar; Sichao Mao ] ]

FYUNLICN Yilei Zheng; Yi-Jun Lin Completed Funding:
Venkata Nithin Kamineni Njing xu; Yu Shin Wang USDA/NIFA Award #: 2020-41480-32497
Yashas Kuchimanchi Jake Willson USDA/NIFA Award #: 2020-67015-31456

USDA/NIFA Award #: 2020-67030-31479

Zhicheng Zhang Gabrlel (Guanyu) Tao

CHOP subaward #: FP37698 SUBO01_01
NIH/NIBIB Grant #: RO3EB026045

USDA/NIFA Award #: 2019-41480-30296
USDA/NIFA Subaward #: A20-2028-S002
NIH/NIBIB Grant #: RO3EB025566

USDA/NIFA Award #: 2018-41480-28805
USDA/NIFA Award #: 2017-68003-26499
USDA/NIFA Award #: 2017-41480-27310
USDA/NIFA Award #: 2016-41480-25729

AASV Foundation Grant Award #: A00-1103-001
K-State CVM SUCCESS-FYI Program

K-State Mark Derrick Canine Research Fund
K-State Global Campus Internal Grant Program
K-State Mentoring Fellowship

K-State University Small Research Grant (USRG)

FOOd Anlmal Reswiue Av0|dance Databank
(Ac compon ent of the Food Animal Residue Avo d < & Depletion Program) USDA

UGA 2013  KSU 2017 KSU Lab 2019 UF Lab 2023

National FARAD 2019  UF FARAD 2021  National FARAD 2022
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