

Department of Environmental and Global Health **UNIVERSITY of FLORIDA**

Leveraging machine learning and artificial intelligence to enhance toxicological sciences and physiologically based pharmacokinetic modeling

Zhoumeng Lin, BMed, PhD, DABT, CPH, ERT

Center for Environmental and Human Toxicology (CEHT) & Center for Pharmacometrics and Systems Pharmacology (CPSP) Department of Environmental and Global Health, College of Public Health and Health Professions (primary appointment) Department of Physiological Sciences, College of Veterinary Medicine (jointly appointed) Department of Pharmaceutics, College of Pharmacy (jointly appointed) University of Florida, Gainesville, FL 32610 **Outline**

Research Program in Computational Toxicology and Pharmacology

UF

- Artificial intelligence (AI) is a rapidly developing subdiscipline of computer science with the goal of designing and creating machines or computational models that can perform a variety of cognitive tasks at a level comparable or even exceed human intelligence.
- In this presentation, it mainly refers to the applications of various machine learning methods in the prediction and evaluation of chemical toxicokinetic (i.e., absorption, distribution, metabolism, and excretion [ADME]) and toxicity properties.
- Machine learning (ML) is a subarea of artificial intelligence, and it refers to mathematical or computer algorithms designed to teach or train a computational model to solve a problem or perform complex tasks based on some input parameters.

ARTIFICIAL INTELLIGENCE A program that can sense, reason,

act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

What is PBPK Modeling?

- Quantitative structure activity relationship analysis (QSAR): the study of the relationship between chemical structure and biological properties of substances.
- QSAR has long been used by researchers to predict pharmacokinetics and toxicity properties of chemicals and to develop new products or therapeutic agents with desirable properties.

- Physiologically based pharmacokinetic (PBPK) modeling
- Quantitative structure-activity relationship (QSAR) modeling
- Adverse outcome pathway (AOP) analysis
- High-content image-based screening
- Toxicogenomics

CONTEMPORARY REVIEW

Machine Learning and Artificial Intelligence in Toxicological Sciences

Zhoumeng Lin ()*,†,1 and Wei-Chun Chou ()*,†

*Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32610, USA; and [†]Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32608, USA

¹To whom correspondence should be addressed at Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA. E-mail: linzhoumeng@ufl.edu.

-		
	Uļ	

Table 1. A List of Machine Learning Methods Commonly	y Used in Toxicological Research
--	----------------------------------

Method	Brief Description
Supervised linear methods	
Multiple linear regression	Use multiple explanatory variables to predict the outcome of a response variable with a multivari- ate linear equation
Naïve Bayes classifier	Based on Bayes' theorem with strong assumptions of conditional independence among molecular descriptors (ie, explanatory variables)
Supervised nonlinear methods	
k-nearest neighbors	Classify a test chemical by looking for the training chemicals with the nearest distance to it
Support vector machine	Map molecular descriptor vectors into a higher dimensional feature space to build a maximal mar- gin hyperplane to distinguish active (toxic) from inactive (nontoxic) chemicals
Decision trees	Each model is a series of rules organized in the format of a tree containing a single root node and any number of internal nodes and several leaf nodes. The path from the root to a leaf stands for a sequence of classification rules predicting a toxicity endpoint for a given chemical
Ensemble learning	Combine several base models into a more predictive one. Popular types of ensemble modeling in- clude bagging, random spaces, boosting, and stacking.
Random forest	Combine the bagging with the random spaces approaches in application to decision trees base models
Artificial neural networks	
Backpropagation neural networks	All neurons are divided into 3 layers, with information flowing from the first layer of input neu- rons to the second layer of hidden neurons, and then to the third layer of output neurons
Bayesian-regularized neural networks	Apply Bayesian methods to perform regularization so that the model complexity is balanced against the accuracy of reproducing training data
Associative neural networks	Apply ensemble learning to backpropagation neural networks
Deep neural networks	Artificial neural networks with multiple hidden layers (also called deep learning)
Unsupervised methods	
Principle component analysis	Reduce the dimensionality of the data to only the first few principal components while preserving as much of the data's variation as possible
Kohonen's self-organizing maps	Map molecules from the original descriptor space onto a 2D grid of neurons. Similar molecules will be mapped to the same closely located neurons in the grid

This table is based on the book chapter by Baskin (2018). Please refer to Baskin (2018) for detailed description about each of the listed machine learning algorithms.

List of Studies using ML in QSAR Modeling to Predict Toxicity

Table 2. Representative Studies Integrating	Machine Learning Approaches With	Ouantitative Structure-Activity Relationship Modeling
	o rr	C

Best Machine learning Method	Training Dataset	Endpoint	Reference
Deep learning (ie, DeepTox)	11 764 chemicals from Tox21	12 bioassays	Mayr et al. (2016)
Ensemble extreme gradient boosting	1003 chemicals	Carcinogenicity	Zhang et al. (2017)
Random forest	Over 866 000 chemical proper- ties/hazards	Acute oral and dermal toxicity, eye and skin irritation, muta- genicity, and skin sensitization	Luechtefeld et al. (2018)
Ensemble support vector machine	400 chemicals	Aquatic acute toxicity	Ai et al. (2019)
Multitask neural networks and graph convolutional networks	1012 PFAS	Bioactivity on 26 bioassays	Cheng and Ng (2019)
Extra trees	Over 1000 chemicals from differ- ent databases	Various toxicities	Pu et al. (2019)
Ensemble model	7385 chemicals	Acute toxicity in rats	Russo et al. (2019)
Support vector machine	482 chemicals	Acute toxicity in fathead minnow	Chen et al. (2020)
Deep learning (ie, CapsCarcino)	1003 chemicals from CPDB	Carcinogenicity	Wang et al. (2020)
Kernel-weighted local polyno- mial approach	Hundreds of chemicals depend- ing on the species	Acute aquatic toxicity	Gajewicz-Skretna et al. (2021)
Meta ensembling of multitask deep learning models (ie, QuantitativeTox)	Hundreds to thousands of com- pounds depending on the endpoint	LD_{50} and LC_{50}	Karim et al. (2021)
Deep learning-based model-level representations (ie, DeepCarc)	692 chemicals	Carcinogenicity	Li et al. (2021)
Extra trees	Over 18 600 drug-bacteria interactions	Gut bacterial growth	McCoubrey et al. (2021)
Support vector machine	676 pesticides	Acute contact toxicity on honey bees	Xu et al. (2021)
A consensus model based on 4 algorithms	1244 chemicals	Prenatal developmental toxicity	Ciallella et al. (2022)
Deep learning	31 chemicals with known or sus- pected clinical skin toxicity	Skin toxicity	Hu et al. (2022)
Random forest	1476 food contact chemicals	Carcinogenicity	Wang et al. (2022)

CPDB, Carcinogenic Potency Database. LC₅₀ and LD₅₀ refer to the compound concentrations that kill half the members of the tested animal population, respectively.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. *Toxicological Sciences*, 189(1):7-19.

Studies That Used ML/AI to Predict ADME for Pharmaceutical Compounds

Table 2. A List of Representative Studies That Used Machine Learning and Artificial Intelligence Approaches in the Predictions of Absorption, Distribution, Metabolism, and Excretion Properties for Pharmaceutical Compounds

References	N	Predict Target	Descriptor Types	Modeling Method	Performance ^a	
Absorption						
Agatonovic-Kustrin et al. (2001)	86	HIA	0D-3D theoretical descriptors	ANN, RBF, GNN	Training set: R ² = 0.82; RMSE = 0.59 Test set: RMSE = 0.90	
Deconinck et al. (2007)	67	HIA	1D–3D theoretical descriptors plus one of Abraham's solvation parameters	MARS	Whole data set: $RMSE = 7.2\%$; Whole data set: $R^2 = 0.93$	
Niwa (2003)	86	HIA	0D–1D theoretical descriptors	GRNN, PNN	Training set: RMSE = 6.5 Test set: RMSE = 22.8	Toxicological Sciences, 2023, 191(1), 1–14
Talevi et al. (2011)	120	HIA	0D–3D Dragon theoretical descriptors	MLR, ANN, SVM	Training set: $R^2 = 0.8$; RMSE = 0.18 Test set: $R^2 = 0.66$; RMSE = 0.21	OXFORD Society of Toxicology academic.oup.com/toxsci Oxfore academic.oup.com/toxsci
Yan et al. (2008)	52	HIA	Adriana Code and Cerius2 0D–2D theoretical descriptors	GA, PLS, SVM	Training set: $R^2 = 0.66$; RMSE = 12.5 Test set: $R^2 = 0.77$; RMSE = 16	
Shen et al. (2010)	1593	HIA	1D–2D theoretical descriptors	SVM	Training set: Q = 98.5% Test set: Q = 99%	Machine learning and artificial intelligence in
Kamiya et al. (2021b)	184	\mathbf{P}_{app}	Chemical descriptors (not specific descriptions)	SVM, PLS, RBF	Whole data set: R = 0.84-0.85	physiologically based pharmacokinetic modeling
Ghafourian et al. (2012)	310	HIA	A total of 215 descriptors (not spe- cific descriptions)	MLR	Training set: RMSE = 14.54 Test set: RMSE = 23.84	Wei-Chun Chou [] ^{1,2} , Zhoumeng Lin [] ^{1,2,*} ¹ Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA ² Center for Environmental and Human Toxicology. University of Florida, Gainesville, FL 32618, USA
Hou et al. (2007)	648	HIA	0D-2D theoretical descriptors	MARS, GA	Training set: $R^2 = 0.97.3$ Test set: $R^2 = 0.98$	*To whom correspondence should be addressed at Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA. E-mail: linzhoumeng@ufl.edu.
Wang et al. (2017)	970	HIA	2D–3D descriptors, molecular fin- gerprints, and structural	RF	Training set: SE = 0.89; SP = 0.85; Q = 0.89 Text set: SE = 0.82; CB = 0.81; O = 0.82	7
Distribution			Ingments		Test set: $SE = 0.88$; $SP = 0.81$; $Q = 0.87$	
Antontsev et al. (2021)	21	Кр	Not explained in the study	BIOiSIM	Test set: AFE = 0.96 (C_{max}), 0.89 (AUC), 0.69 (Vd); AAFE = 1.2 (C_{max}), 1.30 (AUC), 1.71 (Vd); $R^2 = 0.99$ (C_{max}), 0.98 (AUC), 0.99 (Vd)	
Golmohammadi et al. (2012)	310	Кр	3D descriptors and molecular struc- tural information	SVM; GA, PLS	Training set: $R^2 = 0.98$, RMSE = 0.117 Test set: $R^2 = 0.98$, RMSE = 0.118	7
Liu et al. (2005)	208	Кр	Constitutional, topological, geomet- rical, electrostatic and quantum chemical descriptors	SVM	Training set: $R^2 = 0.97$, RMSE = 0.02 Test set: $R^2 = 0.974$, RMSE = 0.0289	
Yun et al. (2014)	122	Кр	LogP, pKa, fu	DT; RF	Whole data set: $Q = 72\%$	10

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. *Toxicological Sciences*, 191(1):1-14.

Studies That Used ML/AI to Predict ADME for Pharmaceutical Compounds

Abbreviations: AAFE, absolute average fold error, AFE, absolute fold error; ANN, artificial neural networks; Cl_{int}, intrinsic metabolic clearance; Cl_{renal}, renal clearance; Cl_{total}, total plasma clearance; DL, deep learning; DT, decision tree; GA, generic algorithm; GBM, gradient boosting machine; GCN, graphical conventional network; GMFE, geometric mean fold error; GNN, general neural network; GRNN, general regression neural network; F, oral bioavailability; HIA, human intestinal absorption; K_m, Michaelis constant; MARS, multivariate adaptive regression splines; MLR, multiple linear regression; NLR, nonlinear regression; Papp, apparent membrane permeability coefficients; PCA, principle component analysis; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy; R², squared Pearson's correlation coefficient; RBF, radial basis function; RF, random forest; RMSE, root-mean-square error; SVM, support vector machine; V_{max}, maximal reaction rate; XGBoost, eXtreme Gradient Boosting.

^aThe performance from the best model.

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. *Toxicological Sciences*, 191(1):1-14.

UNIVERSITY OF FLORIDA Table 3. A List of Representative Studies That Used Machine Learning and Artificial Intelligence Approaches in the Predictions of ToxicokineticParameters for Nonpharmaceutical Compounds

References	N	Predict Target	Descriptor Types Modeling Meth		Predict Target Descriptor Types Modeling Method		
Wambaugh et al. (2015)	271	Transporter affinity	NA	RF	NA		
Ingle et al. (2016)	1651	Fub	2D molecular descriptors	kNN, SVM, RF	Training set: $R^2 = 0.82$; RMSE = 0.59 Test set: $R^2 = 0.51$: RMSE = 0.218		
Watanabe et al. (2018)	2738	Fub	2D molecular descriptors	kNN, SVM, RF, PLS	Test set: $R^2 = 0.728$; RMSE = 0.145		
Papa et al. (2018)	1000	$\mathrm{Cl}_{\mathrm{int}}$	2–3D molecular descriptors	PLS	Whole data set: R ² = 0.80, RMSE= 0.62		
Pradeep <i>e</i> t al. (2020)	1487	Fub, Cl _{int}	0–3D molecular descriptors	SVM, RF, ANN	Fub: Training set: $R^2 = 0.56$, RMSE = 0.82; Test set: $R^2 = 0.57$, RMSE = 0.80 Cl_{int} : Training set: $R^2 = -0.00$, RMSE = 0.46; Test set: $R^2 = 0.16$, RMSE = 0.40		
Dawson et al. (2021)	6484	Fub, Cl _{int}	1–3D molecular descriptors	RF	Fub: Training set: $R^2 = 0.584$, RMSE = 0.206; Test set: $R^2 = 0.591$, RMSE = 0.187 (Environment chemicals from ToxCast) Clint: Test set: Q = 0.55 (Class 1), 0.12 (Class 2), 0.90 (Class 3)		
Yun et al. (2021)	818	Fub	2D molecular descriptors	kNN, SVM, RF, PLS	Test set: $R^2 = 0.52$, Mean absolute error = 12.6		

Abbreviations: ANN, artificial neural networks; Cl_{int}, intrinsic metabolic clearance; PLS, partial least squares; PNN, probabilistic neural network; Q, prediction accuracy; R², squared Pearson's correlation coefficient; RF, random forest; RMSE, root mean square error; SVM, support vector machine.

^aThe performance from the best model.

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. *Toxicological Sciences*, 191(1):1-14.

A List of Databases That Contains PK Data for Machine Learning Analysis

Table 1. A list of databases that contain pharmacokinetic data for machine learning analyses

Database name	Number of compounds	PK parameters	Description	Website	References	
PK-DB	676	Cl, t _{1/2} , AUC, C _{max} , Kel and PK time- courses data	PK-DB is a comprehensive database, which contains data from human clinical trials and provides curated PK information on characteristics of studied patient cohorts, applied interventions, PK parameters, and PK time-courses data.	https://pk-db. com	Grzegorzewski et al. (2021)	
PK/DB	K/DB 1203 HIA, F, fu, BBB, Vd, PK/DB is a robust database for PK Cl, t _{1/2} studies and in silico ADME predic- tion.		www.pkdb. ifsc.usp.br	Moda et al. (2008)		
PKKB 1685 HIA, fu, Vd, Cl, LD50 Ph		Pharmacokinetic Knowledge Base (PKKB) is a comprehensive data- base of PK and toxic properties for drugs.	http://cadd. suda.edu. cn/admet	Cao et al. (2012)		
e-Drug3D	1852	Vd, Cl, t½, PPB, F, C _{max} , and Tmax	e-Drug3D is a database of 1852 FDA- approved drugs with 3-D chemical structures and information on PK parameters	https://che- moinfo. ipmc.cnrs. fr/MOLDB/ index.php	Pihan et al. (2012)	
ChEMBL	>1M	Not available Open-access database containing ADME and toxic information for		www.ebi.ac. uk/chembl/	Gaulton et al. (2012)	
Lombardo's database	1352	Vd, Cl, MRT, fu, t _{1/2}	A human intravenous PK data set derived from the literature.	Not available	Lombardo et al. (2018)	
Wang's database	970	HIA HIA HIA HIA HIA HIA HIA HIA HIA HIA		Not available	Wang et al. (2017)	
CvT	144	PK time-course data	A public database of chemical time- series concentration data for 144 environmentally relevant chemi- cals and their metabolites	https://github. com/ USEPA/ CompTox- PK-CvTdb	Sayre et al. (2020)	

Abbreviations: AUC, area under curve; BBB, blood brain barrier; CI, clearance; Cmax, maximum concentration; F, oral bioavailability; fu, fraction unbound in plasma; HIA, human intestinal absorption; Kel, elimination rate; LD, lethal dose; MRT, mean residence time; PK, pharmacokinetic; PPB, plasma protein binding; t1/2, terminal half-life; Tmax, time to peak drug concentration; Vd, volume of distribution.

Chou WC, Lin Z. (2023). Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. *Toxicological Sciences*, 191(1):1-14.

A List of Databases Relevant to Computational Toxicology

Table 3. A List of Databases Relevant to Computational Toxicology

Database	Data Size ^a	Data Type	Reference		
ACToR	Over 800 000 compounds and 500 000 assays	In vitro and in vivo toxicity	Judson et al. (2008)		
Biosolids list	726 chemical pollutants	Concentration data in biosolids	Richman et al. (2022)		
CEBS	Over 11 000 compounds and 8000 studies	Gene expression data	Lea et al. (2017)		
ChEMBL	1.1 million bioassays, 1.8 million compounds, over 15 million activities	Literature data on binding, func- tion, and toxicity of drugs and drug-like chemicals	Gaulton et al. (2012)		
Connectivity map	Around 1300 compounds and 7000 genes	Gene expression data	Subramanian et al. (2017)		
CTD	Over 14 000 compounds, 42 000 genes, 6000 diseases	Relationships among com- pounds, genes, and diseases	Davis et al. (2021)		
DrugMatrix	Around 600 drug molecules and 10 000 genes	Gene expression data	Ganter et al. (2005)		
GEO	Over 4300 subdata sets	Microarray, next-generation se- quencing, and other forms of high-throughput functional genomics data	Barrett et al. (2013)		
eNanoMapper	Over 700 types of nanomaterials	Diverse data types on nanomate- rial physicochemical proper- ties and safety	Jeliazkova et al. (2015)		
MoleculeNet	Over 700 000 compounds	Quantum mechanics, physical chemistry, biophysics, and physiology	Wu et al. (2018)		
Open TG-GATEs	170 compounds	Gene expression data and metadata	Igarashi et al. (2015)		
PubChem	Over 111 million compounds, 1.39 million bioassays, and 293 million bioactivity data points	Toxicology, genomics, pharma- cology, and literature data	Kim et al. (2021)		
Pubvinas	11 types of nanomaterials with 705 unique nanomaterials	Up to 6 physicochemical proper- ties and/or bioactivities	Yan et al. (2020)		
REACH	21,405 unique substances with information from 89,905 dossiers	Data submitted in European Union chemical legislation	Luechtefeld et al. (2016)		
RepDose	364 compounds investigated in 1017 studies, resulting in 6,002 specific effects	Repeat-dose study data in dogs, mice, and rats	Bitsch et al. (2006)		
SEURAT	Over 5500 cosmetic-type com- pounds in the current COSMOS database web portal	Animal toxicity data	Vinken et al. (2012)		
ToxicoDB	231 chemicals	Toxicogenomic data	Nair et al. (2020)		
ToxNET	Over 50 000 environmental chemicals from 16 resources	In vitro and in vivo toxicity data	Fonger <i>et al.</i> (2000)		

^a On the basis of live web counts or most recent literature publications as of March 2022. ACToR, Aggregated Computational Toxicology Resource; CTD, Comparative Toxicogenomics Database; CEBS, Chemical Effects in Biological Systems; GEO, Gene Expression Omnibus; Open TG-GATEs, a largescale toxicogenomic database; REACH, Registration, Evaluation, Authorization, and Restriction of Chemicals; SEURAT, Safety Evaluation Ultimately Replacing Animal Testing; ToxNET, Toxicology Data Network. This table was adapted from Ciallella and Zhu (2019) with permission from the publisher.

Lin Z, Chou WC. (2022). Machine learning and artificial intelligence in toxicological sciences. *Toxicological Sciences*, 189(1):7-19.

FLORII

Case Study 1: AI in Predicting ADME Properties

Background

Objective and Rationale

 To develop models to predict the withdrawal time of drugs following extralabel use in food animals in order to protect safety of animal-derived food products, such as meat, milk, and eggs.

Research Program

Food Animal Residue Avoidance Databank

(A component of the Food Animal Residue Avoidance & Depletion Program)

Google Custom Search

2014-2016

- Established methodology
- Created PBPK models for drugs in an average animal
- Ceftiofur, enrofloxacin, flunixin, sulfamethazine
- Swine and Cattle

Lin et al. 2015, J Pharm Sci Lin et al. 2016. Sci Rep Lin et al. 2016. J Vet Pharmacol Ther

2016-2018

- Improved the methodology ٠
- Monte Carlo simulation ٠
- Created PBPK models for • drugs in a diverse population of animals
- Penicillin G ٠
- Swine, beef cattle, dairy cows ٠

Lin et al. 2017. Toxicol Sci Li et al. 2017. Food Chem Toxicol Li et al. 2018. Toxicol Sci

2018-2022

- Graphical user interface (GUI)
- Population PBPK models
- Penicillin G, flunixin, florfenicol, and oxytetracycline
- Physiological parameter database: cattle, swine, chickens, turkeys, sheep, goats
- Other quantitative methods from FDA & EMA

Li et al. 2019, Arch Toxicol Li et al. 2019, J Vet Pharmacol Ther Bates et al. 2020, BMC Vet Res Wang et al. 2021. J Vet Pharmacol Ther Riad et al. 2021. Toxicol Sci Lin et al. 2019. J Anim Sci

Lin et al. 2020, J Vet Pharmacol Ther Smith et al. 2020. Front Vet Sci Li et al. 2021. J Vet Pharmacol Ther Chou et al. 2022. Toxicol Sci Yuan et al. 2022, Food Chem Toxicol Yuan et al. 2022. RTP

Role of AI and PBPK in Animal-Derived Food Safety Assessment

- Long-term: Integration of AI with PBPK and/or QSAR/QSPR to predict PK properties of drugs
- Short-term: Build an AI-QSAR model to predict plasma half-life of animal drugs

prisa

Case Study 2: Al in Predicting Toxicity

Case Study 2: Machine Learning Models to Predict Chemical Carcinogenicity

- Carcinogenicity testing plays an important role in identifying carcinogens in drug development and environmental chemical risk assessment.
- Traditionally, the carcinogenic potency is evaluated with a 2-year carcinogenicity study in rodents, but this process is very time-consuming and resource-intensive.
- Chemical carcinogenicity assessment is required to be conducted in at least 2 species.

frontiers in Artificial Intelligence

ORIGINAL RESEARCH published: 18 November 2021 doi: 10.3389/frai.2021.757780

> Check for updates

DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation

Ting Li^{1,2}, Weida Tong¹, Ruth Roberts^{3,4}, Zhichao Liu^{1*} and Shraddha Thakkar^{5*}

¹Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States, ²University of Arkansas at Little Rock and University of Arkansas for Medical Sciences Joint Bioinformatics Program, Little Rock, AR, United States, ³ApconiX Ltd., Alderley Edge, United Kingdom, ⁴Department of Biosciences, University of Birmingham, Birmingham, United Kingdom, ⁹Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States

Carcinogenicity testing plays an essential role in identifying carcinogens in environmental chemistry and drug development. However, it is a time-consuming and label-intensive process to evaluate the carcinogenic potency with conventional 2-years rodent animal studies. Thus, there is an urgent need for alternative approaches to providing reliable and robust assessments on carcinogenicity. In this study, we proposed a DeepCarc model to predict carcinogenicity for small molecules using deep learning-based model-level representations. The DeepCarc Model was developed using a data set of 692 compounds and evaluated on a test set containing 171 compounds in the National Center for Toxicological Research liver cancer database (NCTRIcdb). As a result, the proposed DeepCarc model yielded a Matthews correlation coefficient (MCC) of 0.432 for the test set, outperforming four advanced deep learning (DL) powered quantitative structure-activity relationship (QSAR) models with an average improvement rate of 37%. Furthermore, the DeepCarc model was also employed to screen the carcinogenicity potential of the compounds from both DrugBank and Tox21. Altogether, the proposed DeepCarc model could serve as an early detection tool (https://github.com/TingLi2016/DeepCarc) for carcinogenicity assessment.

Keywords: carcinogenicity, deep learning, QSAR, non-animal models, NCTRIcdb

OPEN ACCESS

Edited by

Inimary Toby,

University of Dallas, United States Reviewed by: Ensan Ullah, Qatar Computing Research Institute, Qatar Shailesh Tripathi, Tampere University of Technology, Finland

*Correspondence: Zhichao Liu Zhichao.Liu@lda.hhs.gov Shraddha Thakkar Shraddha.Thakkar@lda.hhs.gov

Case Study 2: Machine Learning Models to Predict Chemical Carcinogenicity

- DeepCarc model to predict carcinogenicity for small molecules using deep learning-based model-level representations. The DeepCarc model was developed with a dataset of 692 chemicals and evaluated with a test set consisting of 171 chemicals.
- The data were obtained from the National Center for Toxicological Research liver cancer database and involved both rats and mice.
- The authors also compared performance of the DeepCarc model with other deep learning models that were based on molecule-level representations, including Text Convolutional neural network from DeepChem, Convolutional Neural Network Fingerprint, Edge Attention-based Multi-relational Graph Convolutional Networks, and Chemistry Chainer-Neural Fingerprint.
- This DeepCarc model provides an early screening nonanimal-based tool to assess potential carcinogenicity of new chemicals and is useful for prioritizing chemicals on their potential carcinogenic risk.

Li T, Tong W, Roberts R, Liu Z, Thakkar S. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation. Front Artif Intell. 2021 Nov 18;4:757780.

24

Case Study 2: Machine Learning Models to Predict Chemical Carcinogenicity

TABLE 2 | The model performance of DeepCarc and four advanced DNN models on the test set.

Models	MCC	Accuracy	AUC	F1	BA	Sensitivity	Specificity
DeepCarc	0.432	0.754	0.776	0.828	0.688	0.910	0.467
DC-TEXTCNN	0.392	0.735	0.719	0.829	0.627	0.982	0.271
CH-NFP	0.353	0.725	0.776	0.814	0.639	0.928	0.350
EAGCNG	0.328	0.713	0.682	0.800	0.641	0.883	0.400
CNF	0.185	0.673	0.636	0.796	0.541	0.982	0.100

Case Study 3: Al-assisted PBPK Model for Nanoparticle Risk Assessment Cancer Nanomedicine

UF

Critical barriers to progress in this field

- Nanotoxicology: lack of robust computational tools to assess risk
- Nanomedicine: low delivery efficiency (<1%) to target tissues (i.e., tumor)
- Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. 2016. Nature Reviews Materials, 1, 16014.

 Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano. 2020;14(3):3075-3095. (Best Paper Award of the Year 2020 – Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

[•] Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WIREs Nanomed Nanobiotechnol. 2022 Nov;14(6):e1808.

PBPK Structure in tumor-bearing mice

Note: currently, this database contains 376 datasets from 200 studies published from 2005 to 2018.

Nano-Tumor Database

Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. <u>ACS Nano</u>, 14(3): 3075-3095. (Best Paper Award of the Year 2020 – Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

Representative Results in Tumor-Bearing Mouse Model

UF

28

Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. <u>ACS Nano</u>, 14(3): 3075-3095. (Best Paper Award of the Year 2020 – Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

Case Study 3: Al-assisted PBPK Model for Nanoparticles

Our Own "Nano-Tumor Database" for Subsequent Analyses

CNR or New Ref. ID	New Ref. No Type	MAT	TS	СТ	TM	Shape	log(HD) Z	Р	DE(Tmax)	DE(Tmax)_PK	DE(24)	DE(168)	Max DE	log(DE(Tmax))	log(DE(Tmax)_PK)	log(DE(24))	log(DE(168))	log(Max DE)	Conf. in Predict.
#1 Zhong et al. (2015)	1 Inorganic	Gold	Active	Cervix	XH	Rod	1.38	-18	2.06	1.97	1.69	2.06	2.36	0.31	0.29	0.23	0.31	0.37	Y (R2 = 0.99)
#3 Goodrich et al. (2010)	2 Inorganic	Gold	Passive	Colon	AH	Rod	1.48	0	1.62	1.51	0.99	0.79	2.39	0.21	0.18	0	-0.1	0.38	Y (R2 = 0.99)
#4 Meyers et al. (2015)	3 Inorganic	Gold	Passive	Brain	XH	Spherical	1.58	-5	2.99	3.61	6.64	2.99	7.44	0.48	0.56	0.82	0.48	0.87	Y (R2 = 0.87)
#4 Meyers et al. (2015)	3 Inorganic	Gold	Active	Brain	ХН	Spherical	1.62	-5	2.83	2.85	3.27	2.83	4.18	0.45	0.45	0.51	0.45	0.62	Y (R2 = 0.87)
#5 Dam et al. (2015)	4 Inorganic	Gold	Active	Breast	ХН	Other	1.84	-9.3	0.74	0.64	0.42	1.67	1.77	-0.13	-0.19	-0.38	0.22	0.25	Y (R2 = 0.91)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Active	Skin	хо	Spherical	1.69	-0.6	25.2	25.07	22.86	11	29.88	1.4	1.4	1.36	1.04	1.48	Y (R2 = 0.96)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Active	Skin	хо	Spherical	1.78	-11	25.83	23.86	26.63	9.94	30.24	1.41	1.38	1.43	1	1.48	Y (R2 = 0.96)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Active	Skin	хо	Spherical	2	-9	24.4	21.37	26.87	8.77	29.78	1.39	1.33	1.43	0.94	1.47	Y (R2 = 0.96)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Passive	Skin	хо	Spherical	1.67	-6.7	19.38	18.64	18.11	7.79	23.4	1.29	1.27	1.26	0.89	1.37	Y (R2 = 0.96)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Passive	Skin	хо	Spherical	1.81	-15	14.63	14.28	14.71	5.47	17.52	1.17	1.15	1.17	0.74	1.24	Y (R2 = 0.96)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Passive	Skin	хо	Spherical	2.02	-10	12.17	11.19	11.98	4.53	14.77	1.09	1.05	1.08	0.66	1.17	Y (R2 = 0.96)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Active	Skin	хо	Spherical	2.24	-5	8.79	8.21	9.61	2.98	11.15	0.94	0.91	0.98	0.47	1.05	Y (R2 = 0.96)
#6 Sykes et al. (2014)	5 Inorganic	Gold	Passive	Skin	хо	Spherical	2.22	-6	5.18	4.94	5.63	4.25	6.41	0.71	0.69	0.75	0.63	0.81	Y (R2 = 0.96)
#7 Hu et al. (2014)	6 Inorganic	Gold	Passive	Brain	ХН	Spherical	0.79		1.13	1.12	1.13	0.37	1.34	0.05	0.05	0.05	-0.43	0.13	Y (R2 = 0.98)
#8 Razzak et al. (2013)	7 Inorganic	Gold	Passive	Prostate	ХН	Spherical	1.44		0.13	0.06	0.11	0.03	0.14	-0.89	-1.22	-0.96	-1.52	-0.85	N (R2 = 0.67)
#9 Liu et al. (2014)	8 Inorganic	Gold	Passive	Cervix	XH	Spherical	1.23	-9.8	1.24	1.13	1.02	0.76	1.55	0.09	0.05	0.01	-0.12	0.19	Y (R2 = 0.94)
#9 Liu et al. (2014)	8 Inorganic	Gold	Passive	Cervix	ХН	Spherical	1.49 -	10.5	0.64	0.54	0.7	0.32	0.86	-0.19	-0.27	-0.15	-0.49	-0.07	Y (R2 = 0.94)
#10 Cheng et al. (2014)	9 Inorganic	Gold	Active	Brain	XH	Other	1.38 -	21.3	1.63	1.57	1.58	0.65	1.87	0.21	0.2	0.2	-0.19	0.27	Y (R2 = 0.97)
#10 Cheng et al. (2014)	9 Inorganic	Gold	Passive	Brain	ХН	Other	1.41	21.7	0.61	0.59	0.57	0.26	0.69	-0.21	-0.23	-0.24	-0.59	-0.16	Y (R2 = 0.97)
#10 Cheng et al. (2014)	9 Inorganic	Gold	Passive	Brain	XH	Other	1.32	24.6	0.55	0.51	0.54	0.22	0.61	-0.26	-0.29	-0.27	-0.66	-0.21	Y (R2 = 0.97)
#10 Cheng et al. (2014)	9 Inorganic	Gold	Passive	Brain	XH	Other	1.26	25.4	0.38	0.36	0.4	0.15	0.43	-0.42	-0.44	-0.4	-0.82	-0.37	Y (R2 = 0.97)
#11 Zhang et al. (2015)	10 Inorganic	Gold	Active	Stomach	ХН	Spherical	0.79	-5	9.1	9.52	10.68	9.1	12.46	0.96	0.98	1.03	0.96	1.1	Y (R2 = 0.82)
#12 Black et al. (2014)	11 Inorganic	Gold	Passive	Breast	AH	Spherical	1.84	0	4.02	1.74	4.02	2.11	6.09	0.6	0.24	0.6	0.32	0.78	Y (R2 = 0.99)
#12 Black et al. (2014)	11 Inorganic	Gold	Passive	Breast	AH	Other	2.05	0	1.65	0.62	1.65	0.55	2.14	0.22	-0.21	0.22	-0.26	0.33	Y (R2 = 0.99)
#12 Black et al. (2014)	11 Inorganic	Gold	Passive	Breast	AH	Plate	2.12	0	1.23	0.46	1.23	0.37	1.46	0.09	-0.34	0.09	-0.43	0.16	Y (R2 = 0.99)
#12 Black et al. (2014)	11 Inorganic	Gold	Passive	Breast	AH	Rod	1.89	0	0.47	0.15	0.47	0.17	0.61	-0.33	-0.82	-0.33	-0.77	-0.21	Y (R2 = 0.99)
#13 Liu et al. (2013)	12 Inorganic	Gold	Passive	Breast	хо	Spherical	0.74	0	1.26	1.24	1.54	0.41	1.74	0.1	0.09	0.19	-0.39	0.24	Y (R2 = 0.70)
#14 Karmani et al. (2013)	13 Inorganic	Gold	Active	Skin	хо	Spherical	1.49		2.25	2.23	1.53	2.25	2.52	0.35	0.35	0.18	0.35	0.4	Y (R2 = 0.97)
#15 Wang et al. (2012)	14 Inorganic	Gold	Passive	Breast	AH	Other	1.8	10.2	2.67	2.45	2.67	0.8	3.07	0.43	0.39	0.43	-0.1	0.49	Y (R2 = 0.99)
#15 Wang et al. (2012)	14 Inorganic	Gold	Passive	Breast	AH	Other	1.98	18.7	0.48	0.44	0.48	0.14	0.52	-0.32	-0.36	-0.32	-0.85	-0.28	Y (R2 = 0.99)
#16 Shah et al. (2012)	15 Inorganic	Gold	Passive	Prostate	ХН	Spherical	1.82	-2.6	0.67	0.64	0.67	0.21	0.79	-0.17	-0.19	-0.17	-0.68	-0.1	Y (R2 = 0.99)
#16 Shah et al. (2012)	15 Inorganic	Gold	Passive	Prostate	XH	Spherical	1.8 -	27.1	0.6	0.59	0.6	0.17	0.71	-0.22	-0.23	-0.22	-0.77	-0.15	Y (R2 = 0.99)
#16 Shah et al. (2012)	15 Inorganic	Gold	Active	Prostate	хн	Spherical	1.86	-2.9	0.61	0.55	0.61	0.21	0.85	-0.21	-0.26	-0.21	-0.68	-0.07	Y (R2 = 0.99)

Note: By 2020, this database contains 376 datasets from 200 studies published from 2005 to 2018. By 2023, this database contains 535 datasets from 298 studies published from 2005 to 2021.

 Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z*. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano, 14(3): 3075-3095. (Best Paper Award of the Year 2020 - Honorable Mention presented by Society of Toxicology Biological Modeling Specialty Section in 2021)

• Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z*. (2023). Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS Nano, in press.

A data-driven approach

A hybrid approach

Lin Z, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE. (2022). Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. *International Journal of Nanomedicine*, 17:1365-1379.

Chou WC, Chen Q, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. (2023). An artificial intelligence-assisted physiologicallybased pharmacokinetic model to predict nanoparticle delivery to tumors in mice. *Journal of Controlled Release*, 361:53-63.. • By leveraging machine learning and artificial intelligence approaches, now it is possible to:

(1) Develop in silico models to predict ADME properties of hundreds of chemicals with acceptable accuracies;

- (2) Develop PBPK models for hundreds of chemicals efficiently;
- (3) Create in silico models to predict toxicity for a large number of chemicals with similar accuracies compared with in vivo animal experiments;
- (4) Analyze a large amount of different types of data (toxicogenomics, high-content image data, etc.) to generate new insights into toxicity mechanisms rapidly, which was difficult by manual approaches in the past.
- Several challenges should be considered:

(1) Not all machine learning models are equally useful for a particular type of toxicology data, and thus it is important to test different methods to determine the optimal approach;

(2) Current toxicity prediction is mainly on bioactivity classification (yes/no), so additional studies are needed to predict the intensity of effect or dose-response relationship;

(3) As more data become available, it is crucial to perform rigorous data quality check and develop infrastructure to store, share, analyze, evaluate, and manage big data;

(4) It is important to convert machine learning models to user-friendly interfaces to facilitate their applications by both computational and bench scientists.

Acknowledgements

Lab members:

Former members:

Zhoumeng Lin Wei-Chun Chou **Qiran Chen** Xue Wu Malek Hussein Hajjawi Pei-Yu Wu Chi-Yun Chen Venkata Nithin Kamineni Yashas Kuchimanchi Zhicheng Zhang

Miao Li Yi-Hsien Cheng Long Yuan Md Mahbubul Hug Riad **Dongping Zeng Trevor Elwell-Cuddy** Paula Solar; Sichao Mao Yilei Zheng; Yi-Jun Lin Ning Xu; Yu Shin Wang Jake Willson Gabriel (Guanyu) Tao

ICCM/NICKS/KSU EGH/CEHT/UF CPSP/UF FARAD Team

Collaborators:

Advisors: Dr. Jim E. Riviere Dr. Nancy A. Monteiro-Riviere Dr. Nikolay M. Filipov Dr. Jeffrey W. Fisher Dr. Ronette Gehring

UF Lab 2023

National FARAD 2022

Active Funding:

- NIH/NIBIB Grant #: R01EB031022
- USDA/NIFA Award #: 2023-41480-41035
- USDA/NIFA Award #: 2022-41480-38137
- USDA/NIFA Award #: 2021-41480-35271
- USDA/NIFA Award #: 2021-67015-34084
- UF PHHP PhD Fellowship in Artificial Intelligence

Completed Funding:

- USDA/NIFA Award #: 2020-41480-32497
- USDA/NIFA Award #: 2020-67015-31456
- USDA/NIFA Award #: 2020-67030-31479
- CHOP subaward #: FP37698 SUB01 01
- NIH/NIBIB Grant #: R03EB026045
- USDA/NIFA Award #: 2019-41480-30296
- USDA/NIFA Subaward #: A20-2028-S002
- NIH/NIBIB Grant #: R03EB025566
- USDA/NIFA Award #: 2018-41480-28805
- USDA/NIFA Award #: 2017-68003-26499
- USDA/NIFA Award #: 2017-41480-27310
- USDA/NIFA Award #: 2016-41480-25729
- AASV Foundation Grant Award #: A00-1103-001
- K-State CVM SUCCESS-FYI Program
- K-State Mark Derrick Canine Research Fund
- K-State Global Campus Internal Grant Program
- K-State Mentoring Fellowship

Google Custom Search

K-State University Small Research Grant (USRG) Food Animal Residue Avoidance Databank NIH

UGA 2013

KSU 2017

National FARAD 2019

UF FARAD 2021